

BVM 2022

Bildverarbeitung für die Medizin

Algorithms • Systems • Applications

26-28 June, Heidelberg

Organizer

Prof. Dr. Klaus Maier-Hein Division of Medical Image Computing German Cancer Research Center (DKFZ)

Venue

Communication Center, DKFZ Im Neuenheimer Feld 280, 69120 Heidelberg

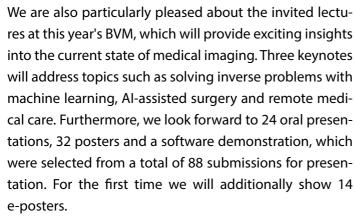
ICD

LAYOUT

Division of Medical Image Computing German Cancer Research Center (DKFZ)

PRINT

German Cancer Research Center (DKFZ)


AS OF

June 2022

Foreword

Welcome to the workshop "Bildverarbeitung für die Medizin" (BVM; Image processing for medicine) 2022 after two years of virtuality and e-meeting fortunately again in person!

Considerable progress is currently being made in the computer-aided processing and automatic analysis of medical image data and the limits of what is possible are being extended significantly. This workshop provides us Prof. Dr. Klaus Maier-Hein with an excellent opportunity to extensively discuss the current state of research and developments on site in Heidelberg.

Finally, BVM's well-known social evening - this year a summer boat trip on the Neckar River - will provide ample opportunity for networking and for friendly exchange.

We would like to take this opportunity to express our sincere thanks to all those who contributed to the success of the workshop during the extensive preparations: the speakers of the guest lectures, the authors of the papers, the industry representatives, the program committee, the professional societies, the members of the BVM organization team, and all the staff of the Division of Medical Image Computing.

Conference Lead Organizer June, 2022

WLAN

Username: guest-0014

Password: LSmpfR9n

After you connect to the network, open any page in your browser. You will then be automatically forwarded to the registration page, where you will be asked to enter your username and password. Alternatively, the "eduroam" WLAN is available at the conference venue.

CME Credits

The workshop is officially recognized as a training event by the Baden-Württemberg State Medical Association.

Table of Contents

Foreword	3
WLAN	4
CME Credits	4
Orientation and Goal	6
Organizer	7
Supporting Societies	7
Sponsors	8
Program Committee	9
Conference Organization	10
BVM Committee	10
Venue	11
Presentation Types	12
Awards	13
Keynotes	15
Tutorials	19
Long Program	23
Posters and Software Demonstrations	27
ePosters	29
Social Events	30

Orientation and Goal

Medical image processing is the key technology for modern image-based diagnostics and surgical support. Since 1993, *Bildverarbeitung für die Medizin* or "Image processing for medicine" has been organized in Germany and attended by researchers, industry partners and students from the image processing field. Throughout the years, the constantly growing number of participants have shown the increased interest and relevance of this event to the community.

The aim of the workshop is to present current research results and to deepen the discussions between medical and technical scientists, industry and users. The workshop is specifically aimed at young scientists who want to report on their bachelor's or master's projects. Contributions from European colleagues are also welcome. English and German are equal congress languages.

The topics of the workshop include all areas of medical image processing, in particular algorithms, hardware and software systems as well as their clinical application:

- · Machine learning and artificial intelligence
- Convolutional neural networks and deep learning
- Imaging and acquisition
- Visible light, endoscopy, microscopy
- · Image segmentation and image analysis
- Image registration and fusion
- Visualization and animation
- Anatomical atlases
- Time series analysis
- Secure exchange of medical image data
- Patient-specific simulation and planning

- Computer-aided diagnosis
- · Virtual / augmented reality
- VR simulators and 3D haptic interaction
- · Biomechanical modelling
- Computer-assisted intervention
- Instrument and patient location and tracking
- Computer-assisted surgical planning
- Clinical application of computer-aided systems
- Validation and Quality Assurance
- · Image-based robots, surgical simulators
- Free themes

Organizer

Division of Medical Image Computing
German Cancer Research Center (DKFZ)

Supporting Societies

Deutsche Gesellschaft für Computer-und Roboterassistierte Chirurgie e.V. curac.org

Gesellschaft für Informatik, Fachbereich Informatik in den Lebenswissenschaften e.V. gi.de

Deutsche Gesellschaft für Medizinische Informatik, Biometrie und Epidemiologie e.V. gmds.de

Deutsche Arbeitsgemeinschaft für Mustererkennung e.V dagm.de

Berufsverband Medizinischer Informatiker bymi.de

Fachgruppe Medizinische Informatik der Deutschen Gesellschaft für Biomedizinische Technik im Verband Deutscher Elektrotechniker vde.com/de/dgbmt

IEEE Joint Chapter Engineering in Medicine and Biology, German Section ewh.ieee.org/r8/germany/emb/

Sponsors

Platinum sponsors (3000€)

EIZO GmbH eizo.de

mbits imaging GmbH mbits.info

sysGen GmbH sysgen.de

Gold sponsors (2000€)

contextflow GmbH

Siemens Healthcare GmbH siemens-healthineers.com

Silver sponsors (1000€)

FUJIFILM Europe GmbH fujifilm.com

Bronze sponsors (500€)

1000shapes GmbH 1000shapes.com

Program Committee

Jürgen Braun Charité - Universitätsmedizin Berlin

Thomas Deserno TU Braunschweig
 Jan Ehrhardt Universität zu Lübeck

Sandy Engelhardt Universitätsklinikum Heidelberg

Ralf Floca DKFZ Heidelberg

Nils Forkert University of Calgary, Canada

Michael Götz Universitätsklinik Ulm
 Horst Hahn Fraunhofer MEVIS, Bremen
 Heinz Handels Universität zu Lübeck

Tobias Heimann Siemens Healthcare GmbH, Erlangen

Matthias Heinrich Universität zu Lübeck

Anja Hennemuth Charité - Universitätsmedizin Berlin
 Alexander Horsch The Arctic University of Norway, Tromsø

Dagmar Kainmüller MDC Berlin

Ron Kikinis Harvard Medical School, USA
 Dagmar Krefting Universitätsmedizin Göttingen

Andreas Maier FAU Erlangen-Nürnberg

Klaus Maier-Hein DKFZ Heidelberg
 Lena Maier-Hein DKFZ Heidelberg
 Andre Mastmeyer Hochschule Aalen
 Dorit Merhof RWTH Aachen

Jan Modersitzki Fraunhofer MEVIS, Lübeck

Heinrich Müller

Nassir Navab

Marco Nolden

Christoph Palm

TU Dortmund

TU München

DKFZ Heidelberg

OTH Regensburg

Bernhard Preim OvG Universität Magdeburg

Stefanie Remmele HAW Landshut Petra Ritter BIH Berlin

Karl Rohr Universität Heidelberg

Daniel Rückert TU München

Sylvia Saalfeld OvG Universität Magdeburg

Dennis Säring FH Wedel

Julia Schnabel
 TU München/Helmholtz Zentrum München

Ingrid Scholl FH Aachen

Stefanie Speidel HZDR/NCT Dresden

Thomas Tolxdorff Charitè - Universitätsmedizin Berlin

Klaus Tönnies OvG Universität Magdeburg
 Gudrun Wagenknecht Forschungszentrum Jülich

René Werner UKE Hamburg

Thomas Wittenberg Fraunhofer IIS Erlangen
Vo Wolf Hochschule Mannheim

Conference Organization

Conference management

Prof. Dr. Klaus Maier-Hein Division of Medical Image Computing (MIC) German Cancer Research Center (DKFZ), Heidelberg k.maier-hein@dkfz-heidelberg.de

Conference secretariat

Stefanie Strysch, Michaela Gelz, Theresa Klocke Division of Medical Image Computing (MIC), DKFZ office-maier-hein@dkfz-heidelberg.de | +49 6221 42 2366

Local organization

Prof. Dr. Klaus Maier-Hein, Jasmin Metzger, Dr. Peter Neher, Dr. Beatrix Tettmann, Dr. Daniel Walther, Dimitrios Bounias, Dr. Kathrin Brunk, Maximilian Fischer, Philipp Schader, Robin Peretzke, Shuhan Xiao, Silvia Dias Almeida.

Division of Medical Image Computing (MIC), DKFZ orga-2022@bvm-workshop.org | +49 6221 42 3547

BVM Committee

Prof. Dr. Thomas M. Deserno

Peter L. Reichertz Institute for Medical Informatics, Technical University of Braunschweig and Hannover Medical School

Prof. Dr. Heinz Handels

Institute for Medical Informatics, University of Lübeck

Prof. Dr. Andreas Maier

Chair for Pattern Recognition, Friedrich-Alexander-University Erlangen-Nuremberg

Prof. Dr. Klaus Maier-Hein

Division of Medical Image Computing (MIC), German Cancer Research Center (DKFZ), Heidelberg

Prof. Dr. Christoph Palm

Regensburg Medical Image Computing (ReMIC), Ostbayerische
Technische Hochschule Regensburg

Prof. Dr. Thomas Tolxdorff

Institute of Medical Informatics of the Charité – Universitätsmedizin Berlin

Venue

Communication Center, German Cancer Research Center Im Neuenheimer Feld 223 69120 Heidelberg

How to reach the DKFZ Communication Center by tram:

Tram stops can be seen right next to the central train station:

- Take either a No. 21 or No. 24 tram towards Handschuhsheim.
- Get off at the "Jahnstraße" stop.
- Cross the street.
- $\hbox{-} Turn\ right\ to\ Im\ Neuenheimer\ Feld\ and\ then\ left\ to\ enter\ the\ campus\ (Kirschnerstrasse).$
- Go on until you see the Communication Center building on the right side, next to the DKFZ main building.

Presentation Types

LECTURES

Current research results will be presented in scientific lectures (12+3 min) and then discussed. The digital presentations should be handed in at the media checkin up to 60 minutes before the start of the respective session. All information on the presentations are listed in the program booklet, including: time, title and presenting author.

POSTER AND SOFTWARE DEMONSTRATIONS

Poster presentations (DIN A0/portrait format) and software demonstrations provide an opportunity for intensive discussions of the submitted works. Posters will begin to be displayed in the Communication Center foyer during the coffee/lunch break before the corresponding poster session. All the information about posters and software demonstrations are listed in the program booklet, including: session, time, title and presenting author.

CONFERENCE PROCEEDINGS

All contributions were published in the conference proceedings and are also available on USB sticks that can be collected during the event.

Bildverarbeitung für die Medizin 2022. (2022). In K. Maier-Hein, T. M. Deserno, H. Handels, A. Maier, C. Palm, & T. Tolxdorff (Eds.), Informatik aktuell. Springer Fachmedien Wiesbaden. https://doi.org/10.1007/978-3-658-36932-3

JOURNAL PUBLICATIONS

It is planned to publish excellent scientific contributions from the BVM 2022 in a special issue of a renowned international journal.

Awards

Selected contributions will be awarded at the BVM 2022. A total of four prize categories were created: BVM Award 2022; BVM lecture award; BVM poster award; 1st, 2nd and 3rd places for BVM best scientific work.

The **BVM Award 2022**, which is endowed with €1000, is awarded for excellent bachelor's and master's theses, dissertations or post-doctoral work in the field of medical image processing, which is sponsored this year by CHILIGmbH, Heidelberg (Dossenheim). Selection was made by a dedicated committee.

The **BVM lecture award** and the **BVM poster award** are decided by the audience votes. Winners are entitled to 200€. Both voting sessions will take place using an online tool, accessible on QR codes that will be displayed during the last coffee break (Tuesday, 15:45).

Finally, the three best scientific contributions are selected for the **BVM best scientific work** by the BVM prize committee. In this booklet, the contributions awarded with a star are nominated for the prize selection. The prizes are endowed as follows:

1st prize €500 2nd prize €400 3rd prize €200

Making Each Life Visual

With RadiForce and CuratOR series, EIZO offers an extensive range of innovative high-end solutions for medical image reproduction in various medical applications from a single source.

Keynotes

Monday, 09:15

Prof. Dr. Stefanie Speidel National Center for Tumor Diseases (NCT) in Dresden stefanie.speidel@nct-dresden.de

The Best of Both Worlds: How Surgeon-Machine Collaboration can benefit the patient

Increasingly powerful technological developments in surgery such as modern operating rooms (OR), featuring digital and interconnected as well as robotic devices provide a huge amount of valuable data which can be used to improve patient therapy. Although a lot of data is available, it is an overwhelming challenge for physicians and the surgical outcome is extremely dependent on the experience of the surgical staff.

In this talk, I'll present our recent research regarding Al-assisted surgery with a specific focus on analysis of intraoperative data. The goal is to bridge the gap between data science, sensors and robotics to enhance the collaboration between surgeons and cyber-physical systems and to democratize surgical skills by quantifying surgical experience and make it accessible to machines. Several examples to optimize the therapy of the individual patient along the surgical treatment path are given. A focus of this talk will be synthetic data generation, intraoperative context-aware assistance as well as data-driven surgical training. Finally, remaining challenges and strategies to overcome them are discussed.

Tuesday, 09:00

Prof. Dr. Ullrich Köthe Visual Learning Lab Heidelberg, Universität Heidelberg ullrich.koethe@iwr.uni-heidelberg.de

Solving inverse problems with machine learning

Inverse problems - the estimation of hidden internal parameters of a system from measured observables - are ubiquitous in science and medicine. A defining characteristic of these problems is that they are usually ill-posed and have no unique solution. Traditional approaches to overcome this difficulty, e.g. regularized optimization or sampling-based Bayesian inference, are unsatisfactory for various reasons. This talk will present Bayes-Flow, a new approach for efficient Bayesian treatment of inverse problems on the basis of invertible neural networks, i.e. networks representing bijective mappings. These networks are trained using simulations of the system under study and can then be repeatedly applied to real data to estimate full posterior probability distributions of the hidden parameters of interest. The talk will explain the basic BayesFlow methodology, demonstrate various applications in image analysis and medicine, and describes ways to verify models with regard to uncertainty calibration and model misspecification detection.

Tuesday, 14:00

Prof. Dr. Rebecca Fahrig Vice President of Innovation for Business Area Advanced Therapies, Siemens Healthineers rebecca.fahrig@siemens-healthineers.com

Improving Access to Care:
Building Blocks for Remote Image-guided
Interventions

One thing that the Covid-19 Pandemic has taught us is that remote medical care is not only possible, but it is also necessary to ensure that we provide equal access to care for all. Today, remote care focuses on those services that can be provided without direct patient access: monitoring of the patients' condition, and performance of preventive and control check-ups outside of medical facilities. At Advanced Therapies we are working on extending beyond "remote consultation" to "remote delivery of patient care". I will describe how we are integrating robotics with a Learning/Digital Interventional Suite, providing Al-based applications to enable safety-at-a-distance, support procedural workflow, enhance x-ray image quality, and maintain clear communication lines between the local team and the remote team. Clinical evidence needs and regulatory hurdles to bring these innovations to product will be described.

Medizinische Bildverarbeitung

Individuelle Softwarelösungen

Speziell für mobile Endgeräte

www.mbits.info

Tutorials

Sunday, 14:00

Room: K1/K2

All tutorials take place in parallel

Tutorial 1: Known operator learning and hybrid machine learning in medical imaging: The past, the present and the future

In this tutorial, we perform a review of the state-of-the-art of hybrid machine learning in medical imaging. We start with a short summary of the general developments of the past in machine learning and how general and specialized approaches have been in competition in the past decades. A particular focus will be the theoretical and experimental evidence pro and contra hybrid modelling. Next, we inspect several new developments regarding hybrid machine learning with a particular focus on so-called known operator learning and how hybrid approaches gain more and more momentum across essentially all applications in medical imaging and medical image analysis. As we will point out by numerous examples, hybrid models are taking over in image reconstruction and analysis. Even domains such as physical simulation and scanner and acquisition design are being addressed using machine learning grey box modelling approaches. Towards the end of the article, we will investigate a few future directions and point out relevant areas in which hybrid modelling, meta learning, and other domains will likely be able to drive the state-of-the-art ahead.

Presenters:

Prof. Dr. Seung Hee Yang, Dr. Vincent Christlein, Prof. Dr. Andreas Maier Pattern Recognition Lab, University of Erlangen-Nuremberg Sunday, 14:00

Room: Lecture Hall

All tutorials take place in parallel

Tutorial 2: Advanced Deep Learning

The remarkable rise of deep learning has led to an overwhelming number of publications being introduced weekly into discourse. This tutorial intends to highlight a selection of some of the most interesting research topics for the medical image computing (MIC) community and present it in a structured and understandable form. It is intended to cover recent developments related to common tasks in the community (e.g. segmentation, detection) and will also discuss methods that are currently gaining traction and that are likely to become even more relevant in the future, such as multi-task learning, active learning, self-supervised learning, causal learning, federated learning and transformers. Basic knowledge of neural networks and deep learning is recommended.

Presenters:

Carsten Lüth,
Saikat Roy,
Tassilo Wald,
Shuhan Xiao,
Ünal Akünal,
Prof. Dr. Klaus Maier-Hein
Division of Medical Image Computing, German Cancer Research Center

Sunday, 14:00

Room: H1.00.028

All tutorials take place in parallel

Tutorial 3: Hands-on Medical Image Registration

In this BVM tutorial, we start by giving a brief overview of the current research in learning-based image registration and useful datasets and benchmarks - with focus on open-source and public accessible resources. Next, we will introduce two hands-on implementation tasks that can be performed on-site and give insight to both aforementioned research directions: GPU-accelerated iterative optimisation and learning to directly predict displacement fields. Gaining new experience and expertise in this inherently multidisciplinary topic can be beneficial to many in our community, especially for the next generation of young scientists, engineers and clinicians who often have only been exposed to a subset of these methodologies and applications.

We will guide participants to understand and implement published algorithms using provided medical challenge data. We aim to provide an opportunity for the participants to bridge the gap between expertises in medical image registration and deep learning, as well as to start a forum to discuss know-hows, challenges and future opportunities in this area. The tutorial can be run in the cloud (e.g. Google colab), please bring your own laptop for active participation.

Presenters:

Fenja Falta,
Hellena Hempe,
Laura Graf,
Niklas Hermes,
Mona Schumacher,
Prof. Dr. Matthias Heinrich
Institute of Medical Informatics, University of Lübeck

AI IN HEALTHCARE

SMARTER, MODERNER & EFFIZIENTER

sysGen GmbH ist ein lösungsorientierter und herstellerunabhängiger IT-Ausrüster für Industrie, Handel, Forschung und Lehre. Das Unternehmen ist darauf spezialisiert, hochwertige Systemlösungen, Server, Workstation und Komponenten inklusive System- und Applikationssoftware sowie Dienstleistungen für den professionellen Einsatz zu entwickeln, zu produzieren und zu vertreiben.

Das umfangreiche IT-Angebot umfasst revolutionäre, zukunftweisende Lösungen für die Bereiche Artificial Intelligence (AI / Deep Learning), High Performance Computing, High Availability Computing (HA), Software Defined Storage, -Network, Virtualisierung und Cloud Computing. Für alle Lösungen und Systemlieferungen werden zusätzliche Dienstleistungen wie Installation vor Ort mit Integration in vorhandene IT-Infrastrukturen, Mitarbeiterschulungen für Hard- und Software angeboten. Unseren Angeboten wird eine qualifizierte Beratung vorgeschaltet, ein kostenpflichtiger, europaweiter IT-Service rundet unsere Angebotspalette ab.

SOFTWARE MACHT DEN UNTERSCHIED

Unser Gesundheitssystem benötigt neue Lösungen, um den Bedarf an personalisierter Medizin, Kliniken der nächsten Generation, höherer Pflegequalität und Durchbrüchen in der biomedizinischen Forschung zur Behandlung von Krankheiten zu decken. sysGen bietet NVIDIA-und VMware-basierte Lösungen für das Gesundheitswesen an. Wir nutzen die Leistungsfähigkeit von Künstlicher Intelligenz (KI) und High Performance Computing (HPC), um Ihnen neue Tools zur Verfügung zu stellen, die eine bessere Patientenversorgung zu geringeren Kosten ermöglichen.

VORTRAINIERTE MODELLE UND MANAGEMENT-PLATTFORMEN FÜR "SMART HOSPITALS"

NVIDIA Fleet Command

ist eine Hybrid-Cloud-Plattform für die ortsunabhängige sichere Installation, Verwaltung und Skalierung von KI-Implementierungen auf Millionen von Servern oder Edge-Geräten in Krankenhäusern.

NVIDIA AI Enterprise

ist eine durchgängige, Cloud-native Suite von KI- und Datenanalysesoftware, die so optimiert ist, dass jedes Unternehmen KI nutzen kann.

NVIDIA Clara Guardian,

ein Anwendungs-Framework und Partner-Ökosystem, das die Entwicklung und den Einsatz von intelligenten Sensoren mit multimodaler KI überall im Krankenhaus beschleunigt.

NVIDIA Clara Parabricks,

Von DNA bis RNA bieten NVIDIA Clara™ Parabricks leistungsstarke Beschleunigung für Primär-, Sekundär- und Tertiäranalysen genomischer Daten. Dies geschieht mit schlüsselfertiger Software, die für Hochleistungslabore vor Ort oder in der Cloud konzipiert ist, und einem Technologie-Stack, der es Entwicklern ermöglicht, leistungsstarke Compute-Tools für die Genomik zu erstellen.

NVIDIA DGX A100™ & H100™

Höchste Performance für Ihre KI-Infrastruktur

NVIDIA DGX & HGX Systeme bieten enorme Rechenleistung um Innovationen im Gesundheitswesen voranzutreiben. In Kombination mit Expertenzugang und einfach zu implementierenden Infrastrukturen sind die NVIDIA DGX & NVIDIA HGX in zertifizierten Supermicro Servern die grundlegenden Bausteine für den Aufbau von KI-Rechenzentren.

Erweitern Sie die Möglichkeiten von Innovation und Optimierung. NVIDIA DGX™ H100, die neueste Iteration der DGX-Systeme, ist das KI-Kraftpaket, das durch die bahnbrechende Leistung der NVIDIA H100 Tensor Core-GPU beschleunigt wird. Verfügbar voraussichtlich ab Q3/2022.

sysGen GmbH

Sitz der Gesellschaft: 28327 Bremen Am Hallacker 48

Tel.: 0421 40966-22 Fax: 0421 40966-33

E-Mail: info@sysgen.de URL: http://www.sysgen.de

Long Program

Sunday, 26th June

Sunday, 26	June					
TIME		AGENDA POINT				LOCATION
13:30		Registration		Registration desk		
14:00		Tutorials Known operator learning and hybrid machine learning in medical imaging: The past, the present and the future		Room K1/K2		
_		Advanced Deep	Learning			Room Lecture hall
16:45		Hands-on: Medical Image Registration			Room H1.00.028	
17:15		City Tour	Meeting point:			
			Old bridge	17:30	Running event	Meeting point: Bismarckplatz
19:00		Program Co	mmittee dinr	ner		Kulturbrauerei
Monday, 2	7 th Jun	ie				
TIME		AGENDA POINT				LOCATION
07:00		Running eve	nt			Meeting point: Bismarckplatz
08:30 Registration and Welcome Coffee		Registration desk & Foyer				
09:00		Opening/ Welcome		•		
09:15	99:15 KEYNOTE Prof. Dr. Stefanie Speidel Keynote chair: Christoph Palm		Lecture hall			
10:00			segmentation I udrun Wagenknech	nt & Micha	nel Götz	Lecture hall
10:00	L1	Optical Cohere	egmentation of Wo nce Tomography Information Cluste	Images	Julia Andresen University of Lübeck	
10:15	L2	Iterative 3D CN Vascular Trees in	N based Segmenta Liver CT	ation of	Mona Schumacher University of Lübeck	
10:30	L3		egmentation with DCE-MRI Contrast		Annika Hänsch Fraunhofer MEVIS	
10:45	L4	5	mantic segmentati ebrae in 3D-CT sca		Hellena Hempe University of Lübeck	
11:00		Coffee break				

TIME		AGENDA POINT		LOCATION
11:20		Session 2: Segmentation II Session chair: Dagmar Kainmüller & Tobias	Heimann	Lecture hall
11:20	L5	Few-shot Unsupervised Domain Adapta- tion for Multi-modal Cardiac Image Segmentation	Mingxuan Gu Friedrich-Alexander- of Erlangen-Nürnber	
11:35	L6	Unsupervised Anomaly Detection in the Wild	David Zimmerer German Cancer Resea	arch Center
11:50	L7	Epistemic and Aleatoric Uncertainty Estimation for PED Segmentation in Home OCT Images	Timo Kepp University of Lübeck	
12:05	L8	Quality monitoring of federated Covid-19 lesion segmentation	Camila González Technical University E	Darmstadt
12:20		Lunch break	DKFZ tour	Meeting point: Registration desk
13:20		Poster session I		Foyer
14:20		Session 3: Detection Session chair: Mattias Heinrich & Karl Rohr		Lecture hall
14:20	L9	Detection of Large Vessel Occlusions using Deep Learning by Deforming Vessel Tree Segmentations	Florian Thamm Friedrich-Alexander- of Erlangen-Nürnberg	,
14:35	L10	nnDetection: A Self-configuring Method for Medical Object Detection	Michael Baumgartner German Cancer Resea	
14:50	L11	Machine Learning-Based Detection of Spherical Markers in CT Volumes	Disha Dinesh Rao Friedrich-Alexander-l of Erlangen-Nürnberg	*
15:05	L12	A Keypoint Detection and Description Network Based on the Vessel Structure for Multi-Modal Retinal Image Registration	Aline Sindel Friedrich-Alexander- of Erlangen-Nürnberg	
15:20		Coffee break		
15:40		Poster session II		Foyer
17:00		GMDS/GI-AG Medical Image and Signal Processing meeting Room: K1/K2	Running event	Meeting point: Bismarckplatz
19:00		Social Networking & Get-Togeth	er on the Neckar	Weiss Flotte Neckarstaden 25

Social Networking & Get-Together on the Neckar Neckarstaden 25, 69117

Tuesday, 28th June

TIME		AGENDA POINT				LOCATION
08:30		Registration and V	Velcome Coffee			Registration desk & Foyer
09:00		KEYNOTE Prof. I Keynote chair: Klaus M		9		Lecture hall
09:45		Session 4: Regist Session chair: Jan Mod		l		Lecture hall
09:45	L13	Training Deep Learni Spine X-rays Using Sy Annotations Created f	nthetic Images and	Frie	n in Sukesh drich-Alexande rlangen-Nürnbe	,
10:00	L14	RobIn: Robust inte	,		ohanie Häger unhofer MEVIS	
10:15	L15	Learning an airway a using semantic inter- registration			ja Falta versity of Lübeck	(
10:30	L16	Guided Filter Regulari Disentanglement of SI ce in Diffeomorphic Au	nape and Appearan-	Ger	tina Uzunova man Research C ficial Intelligence	
10:45		Coffee break				
11:00		Session 5: Surgion Session chair: Sandy E			ıal Reality	Lecture hall
11:00	L17	Automatic Path Planr Pin Insertion in P Surgery		Frie	rian Kordon edrich-Alexande rlangen-Nürnbe	
11:15	L18	Heads Up: A Study of tions for Localisation Reality			N Hombeck versity of Jena	
11:30	L19	Support Point Set Contactless Interacti Learning for Hand Pos	on in Geometric		as Hermes versity of Lübeck	(
11:45	L20	Automatic Switching in Interventional X-ra Deep Learning		Frie	i tha Ravi drich-Alexande rlangen-Nürnbe	,
12:00		Lunch break	Program Commit meeting Room: K1/K2	ttee	DKFZ tour	Meeting point: Registration desk
13:00		Poster session I	II			
14:00		KEYNOTE Prof. I Keynote chair: Thomas		rig		

TIME		AGENDA POINT	LOCA	TION
14:45		Session 6: Surgical Data Science / S Chairperson: Lena Maier-Hein & Heinz Hande	14	nce ture hall
14:45	L21	Ermittlung der Geometrie von Amputa- tionsstümpfen mittels Ultraschall	Carina Krosse Technische Hochschule U	lm
15:00	L22	Monte Carlo Dose Simulation for In-Vivo X-Ray Nanoscopy	Fabian Wagner Friedrich-Alexander-Uni of Erlangen-Nürnberg	versity
15:15	L23	How to generate patient benefit with Surgical Data Science: Results of an international Delphi process	Matthias Eisenmann German Cancer Research	Center
15:30	L24	Stop training your model, read me first: The importance of dataset choice. Lessons learned from COVID-19 X-ray imaging models	Beatriz Garcia Santa Cruz University of Luxembourg	
15:45		Coffee break Voting for best BVM Lecture and Pos	iter Foy	er
16:00		Awards & Closing Laudatio Prof. Dr. rer. nat. The BVM Award: Hristina Uzunov "Generative Deep Learning Models and Synthesis of Medical Image D Structures" BVM best scientific work priz BVM lecture prize BVM poster prize Welcome next BVM organize	omas Tolxdorff a, University of Lübe for the Automatic Analy lata Featuring Patholog	vsis
17:00		Ending		

Nominated for the BVM Best Scientific Work

Poster (P) and Software Demonstrations (S)

Session | Poster ID | Title | 1st Author & Affiliation

I	P32	Initial Investigations towards Non-invasive Monitoring of Chronic Wound Healing using Deep Learning and Ultrasou- nd Imaging	Maja Schlereth Friedrich-Alexander-University of Erlangen-Nürnberg
I	P1	Analysis of Celiac Disease with Multimodal Deep Learning	David Rauber
			OTH Regensburg
I	P2	Form Follows Function - Smart Network Design Enables Zero-Shot Network Reuse	Weilin Fu Friedrich-Alexander-University of Erlangen-Nürnberg
I	P3	C-arm positioning for spinal standard projections in different intra-operative settings	Lisa Kausch German Cancer Research Center
I	P4	Verbesserung des 2D U-nets für die 3D Mikrotomographie mit Synchrotronstrahlung mittels multi-axes fusing	Ivo Matteo Baltruschat Deutsches Elektronen-Synchro- tron
I	P5	Efficient Patient Orientation Detection in Videofluoroscopy Swallowing Studies	Luisa Neubig Friedrich-Alexander-University of Erlangen-Nürnberg
I	P6	Towards Weakly Supervised Segmentation of Orthopaedic X-ray Images using Constrained-CNN Losses	Nikolaus Arbogast Friedrich-Alexander-University of Erlangen-Nürnberg
I	P7	3D-reconstruction of the colon from monocular sequences - Evaluation by 3D printed phantom data	Ralf Hackner Fraunhofer Institute for Integrated Circuits
I	P9	Thrombus Detection in Non-Contrast Head CT using Graph Deep Learning	Antonia Popp Friedrich-Alexander-University of Erlangen-Nürnberg
I	P10	A database and neural network for highly accurate classification of single bone marrow cells	Christian Matek Helmholtz Zentrum Munich
I	P11	Comparison of depth estimation setups from stereoendoscopy and optical tracking for point measurements	Lukas Burger Heidelberg University Hospital
П	P12	$\ensuremath{M}^2\mbox{aia}$ - \ensuremath{Mass} spectrometry imaging applications for interactive analysis in MITK	Jonas Cordes Hochschule Mannheim
П	P13	Learning Features via Transformer Networks For Cardiomyocyte Profiling	Jan Plier Heidelberg University
п	P14	Effect of Random Histogram Equalization on Calcification Analysis Using Deep Learning	Adarsh Panambur Friedrich-Alexander-University of Erlangen-Nürnberg
п	P15	Longitudinal analysis of disease progression using image and laboratory data for Covid-19 patients	Verena Bentele Technical University of Munich
п	P16	Adipose and Muscular Tissue Removal For Direct Volume Rendering of the Visceral Region in Abdominal 3D CT Images	Nico Zettler Hochschule Aalen

П	P17	Elektromagnetisches Instrumententracking für die Schlaganfallbehandlung mittels Thrombektomie	Ann-Kathrin Greiner-Perth Technische Hochschule Ulm
п	P18	Synthesis of Annotated Pathological Retinal OCT Data with Pathology-induced Deformations	Hristina Uzunova German Research Centre for Artificial Intelligence
п	P19	Comparison of evaluation metrics for landmark detection in CMR images	Sven Koehler Heidelberg University Hospital
п	P20	Deep learning models for 3D MRI brain classification: A multi-sequence comparison	Marius Pullig Charité
п	P21	Towards Super-Resolution CEST MRI for Visualization of Small Structures	Lukas Folle Friedrich-Alexander-University of Erlangen-Nürnberg
п	P22	Multi-organ Segmentation with Partially Annotated Datasets	Haobo Song Friedrich-Alexander-University of Erlangen-Nürnberg
ш	P23	A high-content single-cell morphology recognition methodology for liquid biopsies	Jennifer Furkel Heidelberg University Hospital
ш	P24	First steps on Gamification of Lung Fluid Cells Annotations in the Flower Domain	Sonja Kunzmann Friedrich-Alexander-University of Erlangen-Nürnberg
ш	P25	Computation of Traveled Distance of Pigs in an Open Field With Fully Convolutional Neural Networks	Marcin Kopaczka RWTH Aachen University
ш	P26	Spatiotemporal Attention for Realtime Segmentation of Corrupted Sequential Ultrasound Data	Laura Graf University of Lübeck
ш	P27	Virtual DSA Visualization of Simulated Blood Flow Data in Cerebral Aneurysms	Rebecca Pressler University of Jena
ш	P28	Reconstruction of 1D images with a neural network for Magnetic Particle Imaging	Anselm von Gladiss University of Koblenz-Landau
ш	P29	3D Stent Graft Guidance based on Tracking Systems	Sonja Jäckle Fraunhofer MEVIS
ш	P30	Superpixel Pre-Segmentation of HER2 Slides for Efficient Annotation	Mathias Öttl Friedrich-Alexander-University of Erlangen-Nürnberg
ш	P31	Task Fingerprinting for Meta Learning in Biomedical Image Analysis	Patrick Godau German Cancer Research Center
ш	P33	Classification of vascular malformations based on T2 STIR magnetic resonance imaging	Danilo Weber Nunes OTH Regensburg
ш	S 1	DICOM whole slide imaging for computational pathology research in Kaapana and the Joint Imaging Platform	Maximilian Fischer German Cancer Research Center

ePosters (E)

Poster ID | Title | 1st Author & Affiliation

Efficient DICOM-Image Tagging and Cohort Curation within Kaapana	Klaus Kades German Cancer Research Center
Automatic Classification of Neuromuscular Diseases in Children using Photoacoustic Imaging	Maja Schlereth Friedrich-Alexander-University of Erlangen-Nürnberg
Realistic Evaluation of FixMatch on Imbalanced Medical Image Classification Tasks	Maximilian Zenk German Cancer Research Center
Initialisation of deep brain stimulation parameters with multi-objective optimisation using imaging data	Mehri Baniasadi University of Luxembourg
Pathologiespezifische Behandlung von Labelunsicherheit bei der Klassifikation von Thorax-Röntgenbildern	Sebastian Steindl University of Applied Sciences Amberg-Weiden
3D CNN based identification of hyperdensities in cranial non-contrast CT after thrombectomy	Alexandra Ertl Technische Hochschule Ulm
Predicting aneurysm rupture with deep learning on 3D models	Annika Niemann Otto von Guericke University of Magdeburg
GAN-based Augmentation of Mammograms to Improve Breast Lesion Detection	Amir El-Ghousssani Friedrich-Alexander-University of Erlangen-Nürnberg
Multiscale Softmax Cross Entropy for Fovea Localization on Color Fundus Photography	Yuli Wu RWTH Aachen University
Tibia Cortical Bone Segmentation in Micro-CT and X-ray Microscopy Data Using a Single Neural Network	Oliver Aust Leibniz Institute for Analytical Sciences
Reinforcement learning-basierte Patchpriorisierung zur beschleunigten Segmentierung von hochauflösenden Endoskopievideodaten	Samuel Schüttler University Medical Center Hamburg-Eppendorf
Offer Proprietary Algorithms Still Protection of Intellectual Property in the Age of Machine Learning?	Andreas K Maier Friedrich-Alexander-University of Erlangen-Nürnberg
Face Detection From In-car Video for Continuous Health Monitoring	Vinothini Selvaraju Indian Institute of Technology Madras
Diffusion MRI specific pretraining by self-supervision on an auxiliary dataset	Leon Weninger RWTH Aachen University
	Automatic Classification of Neuromuscular Diseases in Children using Photoacoustic Imaging Realistic Evaluation of FixMatch on Imbalanced Medical Image Classification Tasks Initialisation of deep brain stimulation parameters with multi-objective optimisation using imaging data Pathologiespezifische Behandlung von Labelunsicherheit bei der Klassifikation von Thorax-Röntgenbildern 3D CNN based identification of hyperdensities in cranial non-contrast CT after thrombectomy Predicting aneurysm rupture with deep learning on 3D models GAN-based Augmentation of Mammograms to Improve Breast Lesion Detection Multiscale Softmax Cross Entropy for Fovea Localization on Color Fundus Photography Tibia Cortical Bone Segmentation in Micro-CT and X-ray Microscopy Data Using a Single Neural Network Reinforcement learning-basierte Patchpriorisierung zur beschleunigten Segmentierung von hochauflösenden Endoskopievideodaten Offer Proprietary Algorithms Still Protection of Intellectual Property in the Age of Machine Learning? Face Detection From In-car Video for Continuous Health Monitoring Diffusion MRI specific pretraining by self-supervision on an

Social Events

City Tour in the Oldtown

To ensure that the BVM 2022 is not only a scientific, but also a social highlight for all participants, the conference will be framed by an attractive supporting program. The historical attractions of the romantic Heidelberg old town can be discovered and admired at the Special City Tour at 17:00 on Sunday evening, guided by Prof. Dr. Hans-Peter Meinzer.

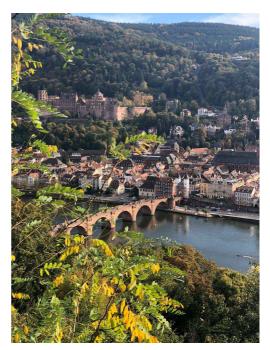
Those interested please send an email to orga-2022@bvm-workshop.org.

Meeting point is in the **middle of the Old Bridge** (Am Hackteufel, 69117 Heidelberg)

Social Networking & Get-Together on the Neckar

As a social highlight, there will be **networking and a get-together** event on Monday evening (June 27th) aboard the **Königin Silvia** of the "Weißen Flotte Heidelberg".

The boarding will start at 19:00 and the ship will depart at 19:30 sharp, on its three-hour round trip towards Neckarsteinach. You only need to bring yourself since everything else will be provided during the trip.


Book your ticket here: bvm-workshop.org/registrierung/ Meeting point is the **Weisse Flotte, Neckarstaden 25, 69117**

Running events

As BVM is not just about talks, those who prefer a mixture of sightseeing and sports should make a note of the BVM Running event. Here we do not limit ourselves to sights in the old town, but can also tackle somewhat more distant sights such as the "Neckarwiesen" or the "Philosophenweg". There are always beautiful views of the old town and Heidelberg Castle. Get to know Heidelberg as usually only locals know it and join the running tours on:

- Sunday 17:30
- Monday 07:00
- Monday 17:30

On different routes in and around Heidelberg. We offer different distances depending on your endurance, so there is something for all running enthusiasts. Those interested can directly show up at the meeting point at the **Bismarckplatz**, next to the fountain.

Program Committee dinner at the Kulturbrauerei

Program Committee members are cordially invited for a dinner on Sunday, 26 June, at the Kulturbrauerei Heidelberg (Leyergasse 6, 69117 Heidelberg), starting at 19:00.

Tours at the German Cancer Research Center

There will also be tours for interested participants on site at the German Cancer Research Center during the lunch breaks. Several demonstrations of the equipments relevant to medical imaging are currently planned. Among other things, PET/CT, PET/MRI, 7T MRI or experimental CT will be presented. Interested participants can register during the BVM.

Notes

	Sunday, 26 th June				
	08:30	Registration			
	14:00	Tutorials			
	17:15	City tour Meeting point: Old Bridge	17:30 Running ever	Meeting point: Bismarckplatz	
	19:00	Program Committee dinner		Meeting point: Kulturbrauerei	
	Monday, 27 th June				
	07:00	Running event		Meeting point: Bismarckplatz	
Ì	08:30	Registration and Welcome Coffee		·	
	09:00	Opening/Welcome			
	09:15	KEYNOTE Prof. Dr. Stefanie Spe	idel		
	10:00	Session 1: Segmentation I			
	11:00	Coffee break			
	11:20	Session 2: Segmentation II			
	12:20	Lunch break		Meeting point: Communication Center	
	13:20	Poster session I			
	14:20	Session 3: Detection			
	15:20	Coffee break			
	15:40	Poster session II			
	17:00	GMDS/GI-AG Medical Image and Signal Processing meeting Room: K1/K2	Running event	Meeting point: Bismarckplatz	
	19:00	Social Networking & Get-Together of	on the Neckar		
	Tuesday, 28 th June				
	08:30	Registration and Welcome Coffee			
	09:00	KEYNOTE Prof. Dr. Ullrich Köthe			
	09:45	Session 4: Registration/ Detection			
	10:45	Coffee break			
	11:00	Session 5: Surgical Data Science/\			
	12:00	Lunch break Program Committee meeting Room: K1/K2		Meeting point: Communication Center	
	13:00	Poster session III			
	14:00	KEYNOTE Prof. Dr. Rebecca Fah			
	14:45	Session 6: Surgical Data Science/ Simulation/ Data Science			
	15:45	Coffee break & Voting for best BVM	Lecture and Poster		
	16 <u>:</u> 00 17 : 00	Awards & Closing			
		Ibr IT-Partner		A	

