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Abstract. Multispectral photoacoustic imaging (PAI) is an emerging imag-
ing modality that enables the recovery of functional tissue parameters
such as blood oxygenation. However, the underlying inverse reconstruc-
tion problems are potentially ill-posed, meaning that radically different
tissue properties may - in theory - yield comparable measurements. In
this work, we present a new approach for handling this specific type of
uncertainty using conditional invertible neural networks. We propose go-
ing beyond commonly used point estimates for tissue oxygenation and
convert single-pixel initial pressure spectra to the full posterior prob-
ability density. This way, the inherent ambiguity of a problem can be
encoded with multiple modes in the output. Based on the presented ar-
chitecture, we demonstrate two use cases that leverage this information
to not only detect and quantify but also to compensate for uncertainties:
(1) photoacoustic device design and (2) optimization of photoacoustic
image acquisition. Our in silico studies demonstrate the potential of
the proposed methodology to become an important building block for
uncertainty-aware reconstruction of physiological parameters with PAI.

1 Introduction

Photoacoustic Imaging (PAI) is an emerging medical imaging modality that
enables the recovery of optical tissue properties with a ”light-in-sound-out” ap-
proach [1]: Tissue is illuminated using light pulses, which leads to the absorption
of photons and subsequent heating of the tissue. The resulting thermoelastic
expansion generates pressure waves, which can then be detected by broadband
ultrasonic transducers. The initial pressure distribution p0, determined for mul-
tiple wavelengths, can then be used to determine physiological tissue properties
like blood oxygenation sO2. However, the non-linear effect of the so-called light
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fluence makes the optical inverse problem ill-posed [2]. This can potentially lead
to ambiguous solutions of the tissue properties. Prior work has addressed re-
lated problems with different approaches to uncertainty quantification [3,4,5,6],
yet explicitly representing ambiguities by full posterior distributions has not been
attempted in the context of machine learning-based image analysis. In this work,
we address this gap in the literature with conditional invertible neural networks
(cINNs) [7]. In contrast to conventional neural networks, the INN architecture
enables the computation of the full posterior density function (rather than a
simple point estimate), which naturally enables the encoding of various types
of uncertainty, including multiple solutions (modes). The contribution of this
paper is two-fold: (1) We adapt the concept of cINNs to the specific problem of
quantifying tissue parameters from PAI data. (2) We demonstrate the value of
our approach with two use-cases, namely PAI device design and optimization of
photoacoustic image acquisition.

2 Materials and methods

2.1 Virtual photoacoustic imaging environment

The virtual environment created for testing the proposed approach to uncer-
tainty quantification is based on a digital PAI device. With it, 3D representa-
tions of the optical and acoustic properties of tissue can be generated, which are
used to simulate synthetic PAI data for a given probe design, pose and ground
truth tissue properties. The data is simulated using the Monte Carlo eXtreme
framework [8]. For this study, each simulation is performed with 107 photons
originating from a pencil-like source and a grid spacing of 0.34 mm. Each vol-
ume is simulated at 26 equidistant wavelengths between 700 nm and 950 nm.

2.2 Approach to uncertainty quantification

Our architecture builds upon the cINN architecture proposed in [7]. Based on
a known forward process for converting tissue properties (here: pixel-wise tis-
sue oxygenation x) to resulting measurements (here: pixel-wise initial pressure

Fig. 1. In silico setting illustrating how slight changes in the PAI probe pose can resolve
model ambiguity (training on S2b, see sec. 2.3). Left: the posterior corresponding to
a pixel of interest features two modes. Right: Owing to an improved acquisition pose,
the same pixel features a uni-modal posterior.
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spectrum y), the task is to train a neural network to recover x from y while ac-
counting for potential ambiguities. To this end, cINNs are leveraged as follows:
Given training data consisting of (simulated) pairs (x, y), a cINN is trained to
convert x to a Gaussian distributed latent space z, using y as conditioning in-
put. This is achieved with maximum likelihood training. During inference time,
because of the invertible architecture, we can sample the latent distribution and,
given a new measurement y used as conditioning input y, generate a conditional
probability distribution p(x|y).

The architecture implemented in this work consists of 20 blocks, each with
a random permutation and a conditional generative flow coupling block [9] (two
fully connected layers of size 512 and rectified linear unit activations). During
training, we apply normally distributed random noise with σ = 0.001 to the
normalized input and σ = 0.1 to the conditioning input. The models are trained
for 60 epochs with the AdamW optimizer and weight decay of 0.01. We start
with a learning rate of 10−3 and reduce it by a factor of 10 after epoch 40 and
50.

To automate the detection of multimodal posteriors, we introduce a multi-
mode score. We perform kernel density estimation on the posterior samples with
21 different bandwidths between 0.01 p.p. and 0.1 p.p.. The score is then the
fraction of estimates with more than one maximum relative to all estimates.

2.3 Experiments

The purpose of our experiments was to (1) validate the proposed approach to
uncertainty quantification in PAI and to (2) showcase use cases that leverage
the posteriors to not only detect and quantify uncertainties but to compensate
for them. To this end, we generated four different settings.

S1: Single vessel, single illumination unit (IU): Images (probabilistically) gener-
ated for this setting comprise a tube of muscle tissue with 2 cm diameter as
background with blood oxygenation uniformly drawn between 0 and 1. In
the center, a blood vessel with a radius uniformly drawn between 1 mm and
3 mm and oxygenation between 0 and 1 is placed. A single illumination source
is used.

S2: Multiple vessels, single IU: Setting S1 is enhanced by introducing an addi-
tional blood vessel randomly placed between the light source and the central
vessel of interest. This vessel also has a radius between 1 mm and 3 mm and
an oxygenation between 0 and 1. Fig. 1 illustrates the basic setup of the
phantoms.

S2b: Multiple vessels, shifted single IU: This setting is identical to S2, but the
scene is illuminated from two additional angles (±45°). We use the three
different illumination setups as independent samples leading to a three times
bigger data set. This setting (S2b) was exclusively used to generate Fig. 1,
i. e. to demonstrate the effect of probe position on the resulting posterior.

S3: Multiple vessels, multiple IUs: The setting uses the same data as S2b, but
we concatenate the three spectra from the different illumination setups (thus
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simulating a complex device with three illumination units/detectors) which
leads to a conditioning input dimension of 3 · 26. Fig. 2 gives an overview of
the settings S1-S3.

We simulated 2,000 volumes for each of the settings and trained cINN models
as described in sec. 2.2 on each of them with 85% of the data. The remaining
15% of the data was used for testing. To validate the accuracy of the posteriors,
we computed the calibration curves for scenarios S1-S3 as proposed in [10]. We
processed the results to analyze the capability of our method to reveal ambiguous
problems (multiple modes) and to determine the effect of device pose and design.

3 Results

As can be seen in Fig. 3 all calibration curves are close to the identity (median
calibration error < 1.5 p.p.). This implies that the width of the posteriors is
reliable. For the setting with a single vessel and single illumination (S1), the
model is slightly underconfident.

In Fig. 4 we compare the distribution of IQRs, absolute errors, and the multi-
mode score for the scenarios S1-S3 described in sec. 2.3. Our results demonstrate
that not only the accuracy but also the likelihood for ambiguity of the problem
depends crucially on the characteristics of the probe (e.g., number of illumina-
tion/detection units). For all three metrics, the performance for the setting with
multiple vessels, but only one illumination (S2) is clearly the worst. In particular,
this setting includes a non-negligible fraction of multimodal posteriors.

Fig. 2. Worst, median, and best case with respect to the IQR of S2 for three investigated
settings. In contrast to a single vessel scenario (top), ambiguities are likely to occur
in a multi-vessel scenario (middle) when using a single light source. These can be
compensated for with multiple light sources (bottom).
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Fig. 1 and Fig. 2 further show that the accuracy at a given pixel depends
crucially on the pose and the illumination geometry of the PAI device. Moreover,
the ambiguity of the inverse problem can be potentially resolved by performing
the acquisition from a different position/angle or by using a multiple illumina-
tion setting (S3). Our approach could thus serve as a basis for optimizing the
measurement process and photoacoustic device design.

4 Discussion

To our knowledge, this is the first work exploring the concept of INNs in the
context of PAI. Specifically, we have demonstrated the capabilities of cINNs to
represent and quantify uncertainties in the context of physiological parameter
estimation. Based on our initial experiments, we believe that our approach could
serve as a basis for optimizing PAI probe design and image acquisition.

This work is similar to that proposed by Adler et al. [11] in the context of
multispectral optical imaging. However, it differs in that we used cINNs instead
of the original INN architecture, which comes along with several major advan-
tages, including (1) no zero-padding needed, leading to smaller network size, (2)
maximum likelihood training, and (3) no hyperparameters in the loss function.
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Fig. 3. Calibration curves of the posterior distributions of the settings S1-S3 as described
in sec. 2.3. Fraction of observations (left) and calibration error (right) as a function of
the confidence interval on the test set.
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Fig. 4. The violin plots show the interquartile range (IQR) of the posterior distribution
on the test set, the absolute error when using the median as an estimate, and the
multimode score, introduced in sec. 2.2. We differentiate between the settings S1-S3 as
described in sec. 2.3.
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Our findings for device design are in line with Shao et al. [12] where a multi-
illumination setup is suggested to improve image reconstruction. Our initial ex-
periments indicate that our method may help in the optimization of the acqui-
sition process. As a next step, our approach has to be extended such that it not
only shows the current ambiguities but also proposes possible poses to resolve
them. This might be achieved through the application of reinforcement learning.

In conclusion, we have demonstrated the potential of cINNs to reconstruct
tissue parameters from PAI data while systematically representing and quanti-
fying uncertainties.
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