
A3047
End-to-end Learning of Body Weight Prediction from

Point Clouds with Basis Point Sets

Alexander Bigalke1, Lasse Hansen1, Mattias P. Heinrich1

1Institut für Medizinische Informatik, Universität zu Lübeck

alexander.bigalke@uni-luebeck.de

Abstract. The body weight of a patient is an important parameter in
many clinical settings, e.g. when it comes to drug dosing or anesthesia.
However, assessing the weight through direct interaction with the pa-
tient (anamnesis, weighing) is often infeasible. Therefore, there is a need
for the weight to be estimated in a contactless way from visual inputs.
This work addresses weight prediction of patients lying in bed from 3D
point cloud data by means of deep learning techniques. Contrary to prior
work in this field, we propose to learn the task in an end-to-end fashion
without relying on hand-crafted features. For this purpose, we adopt the
concept of basis point sets to encode the input point cloud into a low-
dimensional feature vector. This vector is passed to a neural network,
which is trained for weight regression. As the originally proposed con-
struction of the basis point set is not ideal for our problem, we develop a
novel sampling scheme, which exploits prior knowledge about the distri-
bution of input points. We evaluate our approach on a lying pose dataset
(SLP) and achieve weight estimates with a mean absolute error of 4.2 kg
and a mean relative error of 6.4 % compared to 4.8 kg and 7.0 % obtained
with a basic PointNet.

1 Introduction

The precise knowledge of a patient’s body weight is a crucial requirement in
several clinical scenarios, including anesthesia or drug dosage. In emergency sit-
uations, however, patients are often unable to communicate their weight due to
unconsciousness, dementia or neurological disorder. Weighing the patient on-site
with an ordinary scale is infeasible in case of severe injuries, and bed scales are
expensive and not always available. For these reasons, weight is often estimated
by clinical staff although this procedure has been shown to be error-prone in
clinical studies [1].

To obtain more accurate weight estimates, several works use a multiple linear
regression model to infer body weight from biometric measurements such as
height, and waist and hip circumference [2]. Since manual measurements of these
quantities are time-intensive and infeasible in case of certain injuries, it is difficult
to integrate this approach into clinical routine. Instead, a fully automatic and
contactless weight estimate is desirable.



2 Bigalke, Hansen & Heinrich

This can be achieved by deriving the weight estimate from visual sensor data
using methods from computer vision. For this purpose, the use of depth sensors
is particularly suitable. Firstly, depth maps and corresponding point clouds carry
rich geometric information which is of eminent importance for accurate weight
estimates. Secondly, patients are unidentifiable on depth maps which prevents
any privacy concerns.

This work addresses the task of weight estimation of patients lying in bed
from 3D point cloud data by means of deep learning techniques. Contrary to prior
work in this field, we aim to learn weight prediction in an end-to-end fashion.

1.1 Related work

More generic work in the field of weight estimation from visual data predicts the
weight of free-standing subjects from RGB-D data [3]. The proposed method
segments the subject from the background and extrapolates biometric measures
from the silhouette. The deduced measures are fed into a neural network to
regress the subject’s weight.

Several works address weight estimation from point clouds of lying patients
in a clinical environment [4,5]. Libra3D [4] fits a mesh to the point cloud whereby
the patient’s back is modeled with help of the bed plane. Based on the mesh,
the volume of the patient is calculated and multiplied with a fixed empirically
determined density to obtain a weight estimate. The authors of [5] extend this
work by additionally extracting more abstract features from the point cloud,
which are forwarded by a neural network for weight regression. All of these
works rely on hand-crafted features and are not trained end-to-end.

In recent years, end-to-end learning from point clouds has become viable
owing to deep learning architectures that directly operate on raw point sets.
The pioneering PointNet [6] applies a shared multi-layer perceptron to each
point individually and achieves permutation invariance through a symmetric
max pooling operation.

1.2 Contribution

To our knowledge, this is the first work to learn weight prediction from 3D
point clouds in an end-to-end fashion. Since learning weight regression directly
from raw point clouds using a PointNet architecture [6] is a complex task, we
suggest to simplify the problem by considering input point clouds relative to a
fixed reference. To achieve this, we adopt the idea of basis point sets (BPS) [7]
to encode the input point cloud. The resulting feature vector is subsequently
fed into a fully connected neural network to regress the weight. Based on the
observation that the construction of the BPS in [7] is not ideal for our specific
problem, we propose an adapted sampling scheme to incorporate prior knowledge
about the distribution of input points. We experimentally validate our approach
on the SLP dataset [8] and significantly outperform several baselines, including
a PointNet architecture [6].
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2 Materials and methods

Our method receives a point cloud cropped around the bed as input and outputs
the patient’s weight in kg. The point cloud is initially pre-processed, subsequently
encoded by means of a BPS and finally processed by a neural network for weight
prediction (Fig. 1). We assume the patient to be uncovered and in a supine
position, which can easily be realized in clinical workflow.

2.1 Pre-processing

In the pre-processing step, the patient needs to be segmented from the bed. First,
we use the RANSAC algorithm [9] to fit a plane to the mattress and keep only
the points above the plane as it was done in [4]. Most of the kept points belong
to the patient, but there may remain point clusters belonging to other objects
on the bed. To remove those points, we cluster the cloud using DBSCAN [10]
and only keep the largest cluster.

2.2 Basis point set and neural network

After pre-processing, we are left with a set of patient point clouds Xi ∈ RNi×3,
(i = 1, ..., p), each comprising Ni points xij ∈ R3. We encode the clouds with
help of a BPS as elaborated in [7]. In [7], each cloud is initially normalized to fit a
unit sphere which entails a loss of scale information. Since scale is indispensable
for weight estimation, we only mean-center each cloud. Subsequently, a BPS

B = [b1, ..., bk], bj ∈ R3, ‖bj‖ ≤ r (1)

is constructed by uniform sampling of k points from a sphere of radius r. This
set is fixed for all point clouds in training and test set. We select k = 2048 and
set the radius to the maximal radius of all point clouds in the training set, i.e.
r = maxi(maxj ‖xij − (

∑
k xik)/Ni‖).

Given the BPS B, an input point cloud Xi is encoded by computing the
distance from each basis point to the nearest point in the input cloud, yielding
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Fig. 1. Overview of our proposed pipeline for weight estimation from point clouds.
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a k-dimensional feature vector

fB
i = [ min

xij∈Xi

d(b1,xij), ..., min
xij∈Xi

d(bk,xij)] ∈ Rk (2)

This feature vector is subsequently fed into a neural network, consisting of the
following sequence of layers: BN, FC(1024), ReLU, BN, Dropout(p=0.8), FC(1).
The network parameters are optimized by minimizing a mean squared error loss
between predicted weight and ground truth.

2.3 Adapted sampling of basis points

In Fig. 2(a), a BPS obtained by uniform sampling in the sphere is shown relative
to an input point cloud. We observe that many basis points are far away from
the patient and thus encode less detailed information. As all patients have a
similar orientation and occupy similar regions of the sphere, we conclude that
the uniform distribution of basis points is not ideal for our specific problem. We
believe that a more expressive basis can be constructed by incorporating prior
knowledge about the distribution of input points. To achieve this, we propose
to sample the basis points from a unified point cloud which comprises all clouds
from the training set. As this basis is prone to overfitting, we subsequently add
Gaussian noise with a standard deviation of σ = 0.3 to the sampled basis points.
The resulting BPS is depicted in Fig. 2(b).

3 Results

Dataset. We evaluate our method on a subset of the SLP dataset [8]. The subset
comprises depth maps of 109 subjects which are lying in bed in a supine position

(a) Uniform sampling in the sphere. (b) Sampling from training points.

Fig. 2. Comparison of two basis point sets constructed with different sampling schemes.
We visualize a slice of the sphere around the input point cloud of a patient, which is
shown in gray for reference. Basis points are shown in colour to represent the distance
to the closest input point. The basis points constructed by our sampling scheme (b)
are substantially more concentrated around the patient.
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Table 1. Results for weight estimation on the SLP dataset.

method MAE [kg] MRE [%] in 10 % range [%]

mean 9.46 14.6 40.8

median 9.54 14.3 44.9

PointNet [6] 5.42 ± 0.4 8.0 ± 0.5 70.7 ± 3.2

PointNet [6] & median 4.84 ± 0.48 7.1 ± 0.6 74.7 ± 5.3

BPS random sampling 4.91 ± 0.09 7.5 ± 0.1 74.0 ± 0.8

BPS adapted sampling 4.69 ± 0.08 7.1 ± 0.1 76.1 ± 1.0

BPS adapted sampling & median 4.19 ± 0.12 6.4 ± 0.2 78.6 ± 2.9

without a cover. Each subject takes 15 different poses while staying in supine
position, yielding an overall of 1635 frames. For each frame, a bounding box
around the bed is obtained with the help of depth thresholding, and the corre-
sponding image crop is transformed to a point cloud using the internal camera
parameters. The weight of the subjects ranges from 43.7 to 105.1 kg with a mean
of 68.0 kg and a standard deviation of 12.7 kg. We use the first 60 subjects for
training and results are reported for the remaining 49 subjects.

Implementation Details. For pre-processing, we run RANSAC with a thresh-
old of 1 cm for 1000 iterations. DBSCAN is used with ε = 2.5 cm and minpts = 5.
Network parameters are optimized with the ADAM optimizer. The initial learn-
ing rate is set to 0.001 and halved every 40 epochs. We use a batch size of 16
and train for 200 epochs. Each experiment is repeated ten times and we report
mean and standard deviation.

Baselines. As baseline, we train a basic PointNet [6] to directly regress the
weight from the point cloud of the patient. Additionally, we estimate the weight
of each test subject with a constant value which corresponds to the mean/median
weight of all subjects from the training set of the same sex as the test subject.

Results are presented in Tab. 1. We compare the baseline methods to three
variants of our approach: 1) uniform sampling of basis points in the sphere,
2) sampling the basis points from training points, 3) same as 2), but for each
subject, we take the median of the predicted weights for all 15 frames. For each
method, we report the following metrics on the test set: mean absolute error
(MAE), mean relative error (MRE), percentage of subjects within a relative
error range of ±10 %.

Results demonstrate that BPS with random sampling halves both MAE and
MRE of the mean/median baselines and considerably improves on the PointNet
architecture without median filtering as well. Applying our adapted sampling
further reduces MAE by 0.22 kg and MRE by 0.4 % points. Finally taking the
median of 15 independent weight estimates for the same subject yields another
improvement of 0.5 kg in MAE and 0.7 % points in MRE. That way, we achieve
an overall MAE of 4.19 kg, MRE of 6.4 % and the weight of 78.6 % of the subjects
is estimated within a 10 % error range. This constitutes a relative performance
gain in MAE of 56 % compared to the mean/median baseline and of 13.4 % in
relation to the corresponding PointNet model.
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4 Discussion

This work successfully applied the concept of BPS [7] to learn body weight
prediction from point clouds of lying patients in an end-to-end fashion. We
optimized the method for the specific problem at hand by introducing a cus-
tomized sampling scheme for basis construction which takes the prior distri-
bution of input points into account and thus contributed a meaningful perfor-
mance gain. Finally, the experiments showed that a further increase of accuracy
can be achieved by statistical averaging over several independent weight esti-
mates for the same subject. Altogether, our method achieves a higher accuracy
(MAE=4.2 kg, MRE=6.4 %) than weight estimates by clinical staff, which ex-
hibit MAEs between 5.7 and 8.7 kg in [2] and MREs of 7.7 to 11.0 % in [1]. That
way, our work demonstrates the potential of end-to-end deep learning in the con-
text of weight estimation and thus encourages further research in this direction.
Future work could, for instance, incorporate semantic labels or point descriptors
into the encoding or address the construction of an even more tailored basis set.
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