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Abstract. Computational Fluid Dynamic calculations are a great as-
sistance for rupture prediction of cerebral aneurysms. This procedure
requires a consistent surface, as well as a separation of the blood vessel
and aneurysm on this surface to calculate rupture-relevant scores. For
this purpose we present an automatic pipeline, which generates a surface
model of the vascular tree from angiographies determined by a marker-
based watershed segmentation and label post-processing. Aneurysms on
the surface model are then detected and segmented using shape-based
graph cuts along with anisotropic diffusion and an iterative Support Vec-
tor Machine based classification. Aneurysms are correctly detected and
segmented in 33 out of 35 test cases. Simulation relevant vessels are suc-
cessfully segmented without vessel merging in 131 out of 144 test cases,
achieving an average dice coefficient of 0.901.

1 Introduction

Intracranial aneurysms are a common cerebrovascular disease, in which a weak-
ness of the vessel wall causes widening or ballooning of cerebral arteries. A small
percentage of intracranial aneurysms rupture and consequently cause subarach-
noid hemorrhage with high mortality and disability rates. Due to the catastrophic
nature of aneurysm rupture on the one hand side, but low rupture risk and sig-
nificant risk of complication during treatment on the other side, rupture risk
assessment is an important step during clinical decision making. Different scores
based on clinical, morphological and hemodynamic parameters like Normalized
Wall Shear Stress (WSS) and Oscillatory Shear Index (OSI) [1] to evaluate the
rupture risk, can be computed on a patient individual geometry of the vascu-
lar tract with the help of Computational Fluid Dynamics (CFD) simulations.
Sufficient smoothness and resolution of the reconstructed geometry have to be
ensured, to prevent introduction of non-physiological flow structures. The def-
inition of the rupture risk scores require a differentiation between aneurysm
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wall and parent vessel wall. Therefore, an aneurysm detection mechanism is re-
quired. These requirements, in combination with problems like resolution-related
merging of blood vessels, pose a great challenge to the development of a fully
automated segmentation pipeline for CFD analyses. Solutions that cover both
problems are either semi-automatic [2] with a manual selection of seeds for a
region growing, or they are only designed to detect the aneurysm and not to
generate a CFD usable surface [3].

2 Methods

In this section, we describe our automatic seed extraction combined with a
marker-based watershed segmentation and discuss our extension of the approach
by Lawonn et al. [4] to segment and detect more complex aneurysms.

2.1 Dataset

The training data for aneurysm detection consist of 50 surface meshes provided
by Pozo et al. [5] as well as 109 surface meshes from MICCAI 2020 Cerebral
Aneurysm Detection challenge (CADA) [6]. The aneurysm detection and seg-
mentation is evaluated on 35 labeled 3D Rotational Angiography (3DRA) im-
ages provided by Universitätsklinikum Regensburg (UKR). For the evaluation
of the vessel segmentation, this test set is extended by 109 labeled 3DRA images
from CADA challenge.

2.2 Marker-based watershed vessel tree segmentation

The vessel tree is segmented using a watershed segmentation initialized with
markers defining the foreground (vessels) and background (exterior).

Skeletonization After normalizing the image data and applying an anisotropic
diffusion filter to reduce image noise while preserving strong edges, the image
is thresholded using an automatically calculated Otsu threshold. This results
in a segmentation containing artifacts and fused vessels. A coarse vascular tree
skeleton is extracted following [7] and used to mask the image data to the region
of interest, accelerating the following computations.

Marker-based watershed segmentation The markers for the marker-based
watershed segmentation are positioned on the large, relevant vessels of the coarse
vessel tree. Therefor, the vascular tree is traversed starting from the internal
carotid artery which is the vessel with the largest volume. At each node inflow
direction vector vin and the outflow direction vectors voutn of the incident edges
are computed. Edges are grouped to vessel tracts by similar direction and radius,
if they fulfill the properties: 1 − vin·voutn

‖vin‖‖voutn‖
> tcos and rin

routn
< rratio, where

tcos = 0.6 and rratio = 0.7 have been heuristically determined. On each vessel
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tract, exceeding the empirically determined values for length of 15 mm and av-
erage radius of 2.5 mm, a marker is placed. Thin vessels that are not relevant for
the CFD simulation are thus not marked and will not be segmented. The exterior
marker for labeling the non exterior area is placed on a voxel with intensity 0.
The marker-based watershed segmentation is computed on the gradient of the
masked image resulting in a voxelwise classification with different labels for each
grouped vessel.

Post-processing In order to differentiate between voxel contact areas repre-
senting touching vessel walls from those representing vessel bifurcations, we con-
sider the local diffusion of the contact area voxels, defined by the linear diffusion
Cl and planar diffusion Cp introduced by Westin et al. [8]. Assuming a more el-
liptical expansion for removable voxels, their Cl tends to be larger and Cp smaller
than for the mostly circular cross sectioned vessel bifurcations. To determine Cl
and Cp, the positions of the contact voxels are used to construct a covariance
matrix with computation of singular values λ1 ≥ λ2 ≥ λ3: Cl = λ1−λ2

λ1+λ2+λ3
and

Cp = 2(λ2−λ3)
λ1+λ2+λ3

. The contact voxels are removed, if Cl exceeds and Cp goes below
the predefined thresholds tCl

= 0.66 and tCp = 0.37.

2.3 Aneurysm detection and segmentation

A modified version of Lawonn et al. [4] algorithm pipeline for detection of
aneurysms based on the vascular surface geometry is used. We changed the order
of the processing steps and introduced new features to the classifier to reduce
false positives and ensure a stable classification of abnormal aneurysms.

Surface pre-processing The surface mesh is generated from the watershed
segmentation using generalized marching cubes. To prevent possible numeric
mis-calculations, it is ensured that only manifold surface parts are present.

Aneurysm candidate generation Initial binary labeling of the surface tri-
angles {Tj} is performed by solving the combinatorial optimization problem
described in [4] using the Boykov et al. graph cut algorithm [9] based on the
surface shape index [10] values Si. A subsequent connected component analy-
sis to group coherent triangle fields with the same label is performed. Grouped
fields with aneurysm label and an average shape index S̄i < tS are discarded
and labeled as vessel, where tS = 0.78 is determined heuristically.

Growing of aneurysm candidates As aneurysms are not perfectly spherical,
but contain concave regions as seen in Fig. 1, parts of it might be labeled as ves-
sel. Hence, we perform an anisotropic diffusion on the aneurysm field borders,
smoothing and expanding them towards the concave regions and merging close
separated fields following [4]. Based on the resulting diffusion field, represented
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by the continuous function u, threshold Topt assigning triangles to the aneurysm
label is optimized by minimizing the length of the derived border curve. A sec-
ond analysis of connected labels is performed in order to classify each grown or
merged connected field in the next stage.

Fig. 1. Optimization of the graph cut segmented aneurysm candidate fields yields a
single aneurysm with a smooth contour.

Candidate classification A Support Vector Machine (SVM) is used to reclas-
sify the candidates in order to reduce the error rate. In total, six features are
extracted from the mesh data including average shape index Si and spherical
diffusion on all field points as well as planar diffusion and linear diffusion on the
field contour points, as proposed in [4]. Additionally, the variance of the shape
index is used to distinguish aneurysms with both, concave and convex regions
and thus similar Si as tubular structures from vessels. Furthermore, to prevent
misclassification of spherical vessel tips as aneurysms, linear diffusion of all points
per field is used, exploiting the tubular characteristics of the vessels. Using mesh
data of [5] and [6], 326 aneurysm candidate fields were calculated, comprising
141 aneurysm and 185 vessel fields. For each field the six features were extracted
and used for a SVM training with a nonlinear RBF kernel. Optimal regulariza-
tion parameter C = 10 and influence parameter γ = 2.88 were determined by a
grid search with a 5-cross validation, achieving an accuracy of 94%. The grown
candidate fields are classified with the trained SVM. Merged aneurysm fields
now classified as label, probably consist of a true positive aneurysm candidate
merged with a false positive and are thus separated again in a re-optimiziation
process. It includes a threshold Tlimit determination, by reducing threshold Topt
on u, until the merged fields are separated. These separated fields, created by
Tlimit, are re-classified with the SVM, resulting in the final classification.
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3 Results

The pipeline was qualitatively evaluated with respect to correct vessel and aneurysm
segmentation on the 35 UKR cases. For quantitative evaluation of the vessel seg-
mentation the dice value was calculated for the 35 UKR and 109 CADA cases.

3.1 Segmentation

The proposed segmentation yields dice coefficients of 0.9292±0.02 for UKR and
0.8728±0.043 for the more heterogeneous CADA challenge image data. 33 of 35
UKR and 98 of 109 CADA image data segmentations showed no merged vessels in
simulation relevant vessels, i.e. all vessels upstream of the aneurysm as well as at
least 5 times the carrier vessel diameter downstream of the aneurysm. Touching
aneurysms and vessels are correctly segmented as separate structures by our
algorithm, opposed to the merged structure retrieved by Otsu segementation, see
Fig. 2. Generally over-segmentation rather than under-segmentation is observed.

(a) (b) (c) (d) (e)

Fig. 2. Difficult CADA case A095 [6]: (a) Ground truth (GT) surface. (b) Proposed
segmentation. (c) GT segmentation slice. (d) Otsu segmentation slice. (e) Proposed
segmentation slice.

3.2 Aneurysm detection

From the 35 aneurysms, 33 were correctly detected and segmented. The aneurysms
with spherical shape are easily recognized and segmented, as seen in Fig. 3(a)
and 3(b), but also aneurysms with deep concave regions, are correctly segmented
as a result of the improvement as seen in Fig. 3(c) and 3(d). Only two small
aneurysms (see Fig. 3(e)) were not detected.

4 Discussion

We have presented a fully automated segmentation of the middle cerebral arter-
ies and an automatic aneurysm detection resulting in surface models for CFD
analysis. We segment the arterial tree with a high reliability using a marker-
based watershed segmentation with subsequent separation of merged vessels. In
future work we want to extend this method to fusiform aneurysms and further
improve the separation of merged vessels. For the former, new features have to be
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(a) (b) (c) (d) (e)

Fig. 3. Segmentation results for aneurysms with: (a) Normal sphere like structure. (b)
Large sphere like structure. (c) Deep concave region. (d) Deep concave region with two
sphere like blobs. (e) Missing segmentation.

added to the aneurysm detection algorithm. For the latter we plan to improve the
skeletonization method which currently traces the centerline between two thin
neighboring vessels, resulting in the segmentation to label them as one merged
vessel tract. A recalculation of the skeleton on the watershed segmentation with
a subsequent computation of a minimal spanning tree will help splitting merged
vessels.
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