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Abstract. Density of mitotic figures in histologic sections is a prognosti-
cally relevant characteristic for many tumours. Due to high inter-pathologist
variability, deep learning-based algorithms are a promising solution to
improve tumour prognostication. Pathologists are the gold standard for
database development, however, labelling errors may hamper develop-
ment of accurate algorithms. In the present work we evaluated the ben-
efit of multi-expert consensus (n = 3, 5, 7, 9, 11) on algorithmic perfor-
mance. While training with individual databases resulted in highly vari-
able F1 scores, performance was notably increased and more consistent
when using the consensus of three annotators. Adding more annotators
only resulted in minor improvements. We conclude that databases by
few pathologists and high label precision may be the best compromise
between high algorithmic performance and time investment.
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1 Introduction

Histologic examination of tumour specimens is used to derive important infor-
mation with regards to patient prognosis and selection of appropriate treatment.
For numerous tumour types, including canine mast cell tumours, cellular pro-
liferation is one of the most meaningful prognostic parameters. As part of the
recommended grading schemes, cells undergoing division (mitotic figures) must
be counted in histologic sections. However, identification of mitotic figures has
a high degree of inter-observer variability due to inconsistent classification of
mitotic figures (as opposed to mitotic-like impostors) or overlooking/omitting
mitotic figure candidates [1,2]. In order to improve reproducibility and accu-
racy of enumerating mitotic figures, promising deep learning-based algorithms
for the automated analysis of digitised histologic sections have been developed
[1,3,4,5]. However, as pathologists are the gold standard for dataset development,
visual and cognitive limitations of human experts may hamper the consistency
of datasets and subsequently algorithmic performance [2].

All available datasets on mitotic figures from human and canine tumours have
used not more than two pathologists as annotators for initial labelling in histo-
logic images [2,3,4,5,6]. Disagreement between the labels of these two pathologists
was reported in up to 68.2 % [3]. Divergent labels between these two pathologists
were reviewed for final consensus by one [5] or two [3,4] additional pathologists
or by reassessment of the same experts [2,6]. Although consensus by multiple
pathologists is expected to counterbalance the high inter-rater variability, influ-
ence on algorithmic performance has not been examined to date.

This study aims to evaluate the ideal number of expert opinions required for
the development of deep learning-based mitotic figure detection algorithms with
high accuracy. For this purpose, a well established object detection algorithm was
trained with labels derived from a consensus of a range of pathologists (n = 1-11)
and evaluated against reference annotations derived from the total consensus of
twelve pathologists.

2 Material and methods

For this investigation, datasets were created from 50 histologic images of canine
mast cell tumours from 50 patients. Use of these samples was approved by the
local governmental authorities (State Office of Health and Social Affairs of Berlin,
approval ID: StN 011/20). Histologic sections were created with routine methods
(haematoxylin and eosin stain) and digitised at a resolution of 0.25µm per pixel
(400 x magnification) using an Aperio ScanScope CS2 (Leica, Germany) scanner.

2.1 Creation of databases

Independent databases were created by twelve veterinary pathologists (each at
least three years of experience in histopathology) using the SlideRunner annota-
tion software (https://github.com/DeepPathology/SlideRunner). For each of the
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50 slides, a field of interest in the tumour area with a standard size of 2.37 mm2

was selected and annotators marked centroid coordinates of all mitotic figures
recognised in these tumour regions. Each pathologist identified between 1,324
and 4,412 mitotic figures (total number of annotations: 32,917). The dataset
was split into 35 training, 5 validation and 10 test images with similar variabil-
ity in mitotic figure density in the selected regions.

2.2 Deep learning-based mitotic figure detection

For mitotic figure detection we customised a publicly available RetinaNet im-
plementation [1] with a ResNet18 stem. For network training, 2,500 patches
(1,024 x 1,024 pixels at highest resolution) each containing at least one mitotic
figure were randomly drawn from the 35 training images. The network was
trained with a variable number of databases created by the pathologists. The
training and validation reference was individually defined as the majority vote of
this subgroup. The training was split into two phases. First, only the randomly
initialised network heads were trained (batch size: 12) for five epochs using a
maximal learning rate of 10−3. Afterwards, the complete model was trained for
an additional ten epochs and a maximal learning rate of 10−4. During this second
phase, 1,500 patches from the validation set were used for model selection.

Four different training set-ups were evaluated: (1) The network was trained
with each individual pathologist’s database and the model performance was com-
pared to the annotator’s performance on the test set. To ensure stability, the
F1 score was computed as median of three independent training runs. (2) The
network was trained on the consensus of an increasingly larger, randomly cho-
sen subset of pathologists. In order to obtain unambiguous agreement, these
increases consisted only of odd increments. For each addition, ten training runs
were averaged to determine the influence of the random selection of annotators.
For the last two experiments (3) and (4) the annotators were sorted in descending
order by their label agreement compared to the majority vote measured by the
F1 score. The model was then trained on (3) the first n pathologists (=̂ highest
agreement) and (4) on the last n pathologists (=̂ lowest agreement).

By using the consensus, we only trained with mitotic figures with at least 50 %
agreement. We modified the loss computation by weighting the sample with the
percentage of pathologists that agreed upon the respective sample (> 50-100 %).

2.3 Model evaluation

The test set was generated from ten test slides and comprised all mitotic fig-
ure labels upon which the majority of all twelve pathologists (i.e. at least seven
pathologists) agreed. For model performance evaluation, the F1 score was com-
puted. As previously defined by Bertram et al. [6], a mitotic figure detection was
counted as true positive if the Euclidean distance of the reference and predicted
bounding box centroids was at most 25 pixels (=̂ 6.25µm, i.e. approximately the
average cell radius of neoplastic mast cells). The detector confidence threshold
was chosen based on the highest performance on the validation set.
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3 Results

Label accuracy of the twelve pathologists compared to the majority vote was
highly variable with F1 scores ranging from 0.64 to 0.85 (median: 0.77) for the
whole dataset and from 0.68 to 0.86 (median: 0.77) for the test cases. In Fig. 1
the labelling performance of each annotator is compared to the F1 scores of the
RetinaNet, which was trained on mitotic figure labels of the same pathologists.
For the five pathologists with the lowest label agreement on the reference annota-
tions, the algorithmic approach showed similar performance on the test dataset.
Regardless of the label performance of the annotators, the algorithmic F1 score
was capped at around 0.74 for the network architecture used. A more detailed
analysis showed that higher algorithmic performance was associated with high
annotation precision, while labelling sensitivity seemed to have a negligible in-
fluence.

Fig. 1. Labelling perfor-
mance (F1 score) of in-
dividual annotator com-
pared to the performance
of networks trained with
annotations from each re-
spective pathologist (me-
dian and range of three
training runs) evaluated on
the majority vote test set. 1 2 3 4 5 6 7 8 9 10 11 12
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Tab. 1 summarises the network performance when training the algorithm
with databases of an increasingly larger subset of annotators. Compared to a
single annotator, models trained with multi-expert labels resulted in an over-
all higher performance and a lower variability as measured by the interquartile
range. Fig. 2 shows that training with databases that have the highest agree-
ment with the majority vote yielded the best results. However, this arrangement
benefited the least from higher numbers of annotators (as opposed to using the
databases with the lowest agreement).

Fig. 2. Performance
(F1 score) of models
trained with differ-
ent combinations of
annotators. Whiskers
represent the mini-
mum and maximum
F1 score from the
training runs.
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Table 1. Comparison of F1 scores of models trained with different reference annotations
based upon the majority vote from different combinations of annotators.

Database Number of Training Median Minimum Maximum Interquartile

annotators Runs Range

Each once 1 18 x 3 0.726 0.625 0.763 0.038

Random 3 10 0.75 0.728 0.769 0.016

Random 5 10 0.749 0.729 0.777 0.017

Random 7 10 0.756 0.730 0.765 0.008

Random 9 10 0.763 0.745 0.771 0.008

Random 11 10 0.763 0.746 0.769 0.010

Highest agreement 3 5 0.751 0.73 0.762 0.010

Highest agreement 5 5 0.759 0.748 0.770 0.007

Highest agreement 7 5 0.767 0.75 0.776 0.003

Highest agreement 9 5 0.768 0.749 0.771 0.016

Lowest agreement 3 5 0.756 0.753 0.76 0.003

Lowest agreement 5 5 0.74 0.720 0.745 0.018

Lowest agreement 7 5 0.754 0.736 0.761 0.017

Lowest agreement 9 5 0.756 0.749 0.768 0.012

4 Discussion

The high variability between annotators in the present study is consistent with
previous studies [2,3,7] and warrants a detailed evaluation of label consistency
and the impact on algorithmic performance, as was the goal of the present study.
Generally, our results show that the use of a consensus of a higher number of
pathologists for training the algorithm yields better and more consistent results.
In particular, F1 scores were noticeably variable when training the algorithm
with single annotators (interquartile range: 0.038). A consensus by three pathol-
ogists was highly beneficial for more consistent training results (interquartile
range: 0.016). Increasing the number of randomly selected annotators further
only improved the median F1 score by a small amount (+ 0.013). Nevertheless,
we have also shown that even training with a single annotator can result in high
performance. Of note, a high annotation precision of individual pathologists, i.e.
few false positive labels, seemed to be more important than high labelling sen-
sitivity, i.e. few false negatives labels, for training of high-performing models.
This analysis, however, might have been biased by the ground truth definition
as consensus of the majority of pathologists. Our results emphasise that high
annotation accuracy and consensus by a small number of pathologists may re-
sult in the best trade-off between algorithmic performance and labour intensity of
dataset development. Further enhancement of label consistency may be achieved
with repeated screening of images or algorithmically augmented labelling [6]. An
interesting approach to reduce subjectivity for future mitotic figures datasets
was recently introduced by Tellez et al. [8]. In this study, a specific immunohis-
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tochemical marker of mitotic figures was used to derive object labels and labels
were assigned to images with standard histologic stain via image registration.

The major limitation of the conducted experiments was the pathologist-
defined ground truth. Although pathologists are the current gold standard for
labelling histologic images, they have high inter-rater variability which hampers
not only training of data-driven algorithms (as proven in the present study) but
also biases performance evaluation. The finding that algorithms trained with
multi-expert databases outperformed many pathologists on the test set was at-
tributed to the fact that algorithms yielded high sensitivity. Furthermore, the
experiments in the present work were limited to a standard object detection
architecture with relatively low complexity. Compensation for noisy labels and
higher F1 scores may be achieved with a more complex model, such as by adding
a second classification stage [1,6], and larger training datasets. Further improve-
ment of data-derived algorithms may be accomplished with advanced deep learn-
ing methods that incorporate label accuracy during training.
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