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Abstract. Tumor cells with two nuclei (binucleated cells, BiNC) or more
nuclei (multinucleated cells, MuNC) indicate an increased amount of cel-
lular genetic material which is thought to facilitate oncogenesis, tumor
progression and treatment resistance. In canine cutaneous mast cell tu-
mors (ccMCT), binucleation and multinucleation are parameters used
in cytologic and histologic grading schemes (respectively) which corre-
late with poor patient outcome. For this study, we created the first
open source data-set with 19,983 annotations of BiNC and 1,416 anno-
tations of MuNC in 32 histological whole slide images of ccMCT. Labels
were created by a pathologist and an algorithmic-aided labeling approach
with expert review of each generated candidate. A state-of-the-art deep
learning-based model yielded an F1 score of 0.675 for BiNC and 0.623 for
MuNC on 11 test whole slide images. In regions of interest (2.37mm2)
extracted from these test images, 6 pathologists had an object detection
performance between 0.270 - 0.526 for BiNC and 0.316 - 0.622 for MuNC,
while our model archived an F1 score of 0.667 for BiNC and 0.685 for
MuNC. This open dataset can facilitate development of automated image
analysis for this task and may thereby help to promote standardization
of this facet of histologic tumor prognostication.

1 Introduction

Microscopic evaluation of tumor biopsies can yield important information per-
taining to the biological behaviour of a tumor obtained from a patient. Depend-
ing upon the tumor type, different microscopic characteristics are combined to
grading schemes, which are useful estimators of patient outcome. For canine
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cutaneous mast cell tumors (ccMCT), a frequent skin tumor of dogs, the current
grading system encompasses counting the number of mitosis (cells undergoing di-
vision), number of multinucleated cells (MuNC) and cells with aberrant nuclear
size and shape in an tumor area of 2.37mm2 [1]. As opposed to a single nucleus
in most mast cells, MuNC contain three or more nuclei. Tumor cells with two
nuclei (binucleated cells, BiNC) have not been evaluated as an prognostic pa-
rameter in histologic sections in previous studies, however, studies on cytologic
specimens of ccMCT revealed a negative correlation to patient outcome [2].

Formation of BiNC and MuNC results in increased numbers of chromosomes
(genetic material) per cell (polyploidy). This augments the metabolic capacities
of the cell, which is an effective strategy in coping with escalating requirements
for tumor growth. Polyploidy is considered to be key actuator of oncogenesis,
tumor progression, and chemotherapy resistance [3, 4]. Additional nuclei can be
acquired by 1) fusion with other neoplastic or non-neoplastic cells (syncytia) or
2) by an incomplete cell cycle (endoreplication) in the absence of cell division
(failure of cytokinesis). During normal mitosis, the chromosomes are duplicated
and divided into two nuclei, which are further separated into two daughter cells.
If this last step is aborted then both nuclei will remain in the cell of origin.

Deep learning-based algorithms are considered a powerful tool for repro-
ducible automated image analysis (for example for mitotic figures), however,
they require large amounts of labeled data for training and testing models [5, 6].
In the present work we present the first open dataset on BiNC and MuNC in
ccMCT, establish a baseline performance for deep-learning based pipeline and
compare algorithmic performance to six veterinary pathologists.

2 Materials and methods

For this study we developed a novel set of labels for 32 publicly available whole
slides images (WSI, resolution of 0.25 microns per pixel) of ccMCT. WSI were
initially provided by Bertram et al. [6] for a mitotic figure dataset, which in-
cluded 44,880 mitotic figure labels, on the same images.

2.1 Labeling of bi- and multi-nucleated tumor cells

One pathologist screened the 32 WSI using the annotation software SlideRun-
ner [7] and labeled BiNC and MuNC as separate label classes. Thereby, 10,381
labels of BiNC and 775 labels of MuNC were obtained. Because omission of
target cells during manual screening was considered a major limitation, we de-
cided to additionally use an algorithmic-aided pipeline to identify potential tar-
get cells. Each of the candidates was subsequently reviewed by a pathologist.
Using the labeling protocol described in Bertram et al. [6], we split the man-
ual database into three folds and used each fold to train a deep learning-based
network (Sec. 2.2) in order to detect overlooked candidates. A high sensitivity
of finding additional BiNC and MuNC candidates was reached by using a low
detection cutoff, which intentionally resulted in in many false positive detections
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in order to reduce a confirmation bias of the reviewing pathologist. A total of
66,585 potential BiNC and 6,958 MuNC candidates with model scores between
0.3 and 1.0 were retrieved and extracted as 128×128 px images for expert review.
Of these, 9,602 (14.4 %) were classified as BiNC and 641 (9.2 %) as MuNC, which
increased the label classes by 92.5 % and 82.7 %, respectively, compared to the
manual database. Patches that were not assigned to these two classes were
useful as hard negatives in training a classification network (Fig. 1). The final
algorithmic-augmented datasets includes 19,983 labels of BiNC and 1,416 labels
of MuNC. All code and the labels can be accessed on our github project page:
https://github.com/DeepPathology/CCMCT Bi Multinucleated.

2.2 Dataset validation

In order to establish a baseline for automatic detection, we trained a customized
deep learning model. WSI were split into training (N = 21) and test cases (N =
11) according to the original publication of the images [6]. Our model consists
of two stages as previously described for automated mitotic figure detection
[5]. The primary object detection stage is a customized RetinaNet [8] with a
pre-trained ResNet-18 stem [9]. The second stage is a patch classifier, which
was also derived from a pre-trained ResNet-18 architecture [9], and was used to
differentiate hard negatives with high visual similarity to BiNC and MuNC.

2.2.1 Performance validation on the ground truth dataset. First, our model
was validated against the final dataset of the test images. This task evaluated
the object detection performance as per the F1 score on entire histologic sections
and can serve as a baseline performance for future research projects.

2.2.2 Performance validation against pathologists. In order to evaluate whether
algorithms can approximate the performance of pathologists, we compared ob-
ject detections from both on smaller tumor areas (region of interest with a size
of 2.37mm2) from the 11 test WSI. Regions of interest were extracted from the

binucleated cells

mul�nucleated cells

Fig. 1. Number of pathologists agreeing upon an object being a binucleated (upper
images) and multinucleated (lower images) tumor cell.
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WSI with the following criteria for the tumor region: images containing the
most MuNC (as per dataset ground truth), or, if no MuNC were present in the
WSI, images containing the most BiNC. For calculation of performance, ground
truth (GT) labels comprised of the algorithmically augmented database (dataset
ground truth), agreement on labels by 2/6 veterinary pathologists (dual vote
ground truth) or agreement by 3/6 veterinary pathologists (three vote ground
truth). The F1 score was used as a metric to compare the algorithmic approaches
and six experts to the GT labels. We considered two annotations to be identical
if the centers were within a Euclidean distance of 25 px (equivalent to approxi-
mately the mean radius of a mast cell).

2.3 Co-localisation of bi-, multi-nucleated and mitotic tumor cells

In order to better understand the pathology task of enumerating BiNC and
MuNC, we correlated the density of BiNC and MuNC with mitotic figures (pre-
viously published for these WSI [6]). We used a moving window summation with
an area of 2.37 mm2, as described in Auberville et al. [5], to derive the mitotic
count (MC), as well as the BiNC count and the MuNC count. To compare those
density metrics, we used Pearson’s correlation coefficient.

3 Results

Our deep learning-based model yielded an F1 score of 0.675 for BiNC and 0.623
for MuNC when assessed on the dataset GT of the entire 11 test WSI. Compar-
ing the algorithm to the performance of six veterinary pathologists on regions
of interest of the test WSI, the algorithm outperformed all pathologists for de-
tection of BiNC (Tab. 1) and MuNC (Tab. 2) when using the dataset GT
definition, but severely deteriorated for multi-expert GT definitions. In our as-
sessment, the expert performance varied significantly (inter-observer variability)
regardless of the GT definition, whereas identification of MuNC generally had
higher accuracy than identification of BiNC (Fig. 1). This is in contrast to
the algorithmic performance which was hampered by lower numbers of labels on
MuNC (compared to BiNC) for training the model.

Co-localisation of BiNC cells with MuNC (r = 0.66) had a higher positive
correlation than co-localisation of BiNC or MuNC with mitotic density (r = 0.42
and 0.29, respectively).

4 Discussion

With this publication we present a novel open access dataset on BiNC and
MuNC in ccMCT. A first deep learning-based model was able to yield an F1

score of above 0.6 for both label classes and outperformed all pathologists in
object detection compared to the dataset GT. The model architecture was based
upon previous publications on algorithms for mitotic figure detection [5, 6]. It
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Table 1. Performance (F1 score) of veterinary pathologists (VP 1-6) and our deep
learning-based model (DL) for detecting binucleated tumor cells compared to different
definitions of ground truth (GT) labels.

Region of interest test set
WSI test set

Three-vote GT Dual-vote GT Dataset GT

VP 1 0.513 0.567 0.526 N/A

VP 2 0.524 0.420 0.328 N/A

VP 3 0.392 0.478 0.280 N/A

VP 4 0.424 0.433 0.270 N/A

VP 5 0.261 0.511 0.300 N/A

VP 6 0.470 0.372 0.329 N/A

Median VP 1-6 0.447 0.455 0.314 N/A

DL 0.438 0.424 0.667 0.675

Table 2. Performance (F1 score) of veterinary pathologists (VP 1-6) and our deep
learning-based model (DL) for detecting multinucleated tumor cells compared to dif-
ferent definitions of ground truth (GT) labels.

Fields of interest test set
WSI test set

Three vote GT Dual vote GT Dataset GT

VP 1 0.610 0.556 0.622 N/A

VP 2 0.508 0.574 0.513 N/A

VP 3 0.355 0.478 0.361 N/A

VP 4 0.613 0.559 0.545 N/A

VP 5 0.466 0.627 0.441 N/A

VP 6 0.375 0.360 0.316 N/A

Median VP 1-6 0.487 0.558 0.477 N/A

DL 0.481 0.4 0.685 0.628

was beyond the scope of the present study to compare performance of different
algorithmic approaches, however, we encourage other research groups to use this
publicly available dataset to improve state-of-the-art methods for this task.

Although pathologists are the gold standard for labeling structures in histo-
logic sections, an object detection challenge revealed high inter-rater variability
for identifying BiNC and MuNC, which is likely also reflected in label accu-
racy of the dataset. Obstacles to overcome when classifying BiNC and MuNC
include unclear visualization of cell boarders between adjacent cells as well as
differentiation from imposters with indented or lobulated nuclear shape. Fur-
thermore, overlooking/omission of objects was a common source of error. Apart
from containing additional nuclei, BiNC are often inconspicuous, which makes
them difficult to recognize. Enlargement of cell size was more common in MuNC,
which could explain somewhat higher sensitivity of identifying these objects. For
dataset creation, we therefore decided to use an algorithmic-augmented labeling
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approach that was able to detect many missed candidates. In order to reduce
the bias of this labeling approach we intentionally used a low detection threshold
(many false positves) and all labels were reviewed by an expert .

Positive correlation of BiNC and MuNC with mitotic density suggests that
endoreplication is a plausible mechanism for their formation in ccMCT. Although
the number of MuNC is am important prognostic parameter of ccMCT, the
number of BiNC in histologic tumor secions has not been correlated to patient
outcome to date (as opposed to cytologic specimens [2]). As the density of
BiNC was proportional to that of MuNC and both are evidence of polyploidy,
we speculate that histologic assessment of binucleation may have prognostic
relevance in ccMCT. Whereas MuNC are very sparse or absent in most ccMCT
cases and thus is predictive of poor outcome in only small numbers of cases
[1], BiNC are more common in ccMCT and should be considered as a potential
prognostic parameter in future studies. Due to the high inter-observer variability
observed in this study we highlight that methods of enumeration should be better
standardized and we propose that deep learning-based models may be useful to
increase reproducibility and possibly accuracy for assessment of this parameter.
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