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Abstract. The locus coeruleus (LC) is a small nucleus in the brain stem.
It is gaining increasing interest of the neuroscientific community due to its
potentially important role in the pathogenesis of several neurodegenera-
tive diseases such as Alzheimer’s Disease (AD). In this study, an existing
LC segmentation approach has been improved by adding a preceding LC
localization to reduce false positive segments. For the localization, we
propose a network that can be trained using coordinate regression and
allows insights into its function via attention maps.

1 Introduction

The LC is a small brain structure in the upper dorsolateral pontine tegmentum
of the brainstem. It is involved in several important functions, such as memory,
learning, attention, arousal and pain modulation[1]. The LC currently attracts
increasing interest, since it may also play an important role in the pathogenesis
of neurodegenerative diseases[1]. It has been found, that so-called neuromelanin
sensitive Magnetic Resonance Imaging (MRI) allows the in-vivo visualization of
the LC. Further investigations require a delineation of the LC for which manual
segmentation methods have primarily been applied to date[2]. One of the few
exceptions employed a Convolutional Neural Network for this task, namely an
adapted version of the 3D-Unet[3], and was published recently[4].

LC segmentation is a challenging task that results in relatively low inter-rater
agreements, which are characterized by a Dice Similarity Coefficient (DSC) in
the range of 0.499 to 0.64[5,6], depending on the used acquisition and segmen-
tation protocols as well as the experience of the rater. A reason for this is the
substantial uncertainty in the measurements, which is mostly caused by the small
size of the LC, requiring an appropriate resolution. Higher resolutions however,
yield worse signal to noise ratios (SNRs) jeopardizing the relatively weak signal
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(see Figure 3). Nonetheless, reasonable compromises can be found and the re-
sulting hyperintense regions (or properties of them) were shown to correspond
to LC properties obtained in post-mortem studies, such as anatomical posi-
tion and dimensions, LC cell density[7] and age-related effects of neuromelanin
aggregation[1].

In this work, we propose a pipeline for LC segmentation that outperforms
the approach in [4]. Instead of a false positives removal requiring careful param-
eterization, we apply an initial localization network, that was trained to regress
the coordinates of LCs centers of mass (COMs) to obtain a single relevant patch
containing the LC. This patch is then, processed by the 3D-Unet of [4]. This
pipeline is more efficient, as the number of inferences is substantially lower, since
the application is no longer done in a sliding window manner, while reducing false
positive segments outside of the relevant region. For the localization network,
we propose a combination of 3D-Unet and a differentiable spatial to numerical
transform (DSNT)[8]. This architecture offers two major advantages: it allows
insights into the networks function via attention maps as well as the processing
of input volumes of arbitrary shape.

2 Materials and Methods

2.1 Data

This work utilizes the same data set as in [9] and [4]. It contains T1-weighted
FLASH 3T MRI whole-brain acquisitions of 82 healthy subjects, of which 25
are younger (22-30 years old; 13 male, 12 female) and 57 are older adults (61-80
years; 19 male, 38 female). The LCs were manually segmented by two expert
raters, however, for this study, we made use of the masks of just one of the
raters. Prior to delineation, the data was upsampled from an isotropic voxel
size of 0.75mm3 to 0.375mm3 by means of a sinc filter. Additionally, a bias field
correction was applied. For more details on the data set, see [9].

Fig. 1. Schematic illustration of CoRe-Unet, which directly predicts the coordinates of
a voxel in the input volume. The white numbers denote the number of features.
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2.2 Network architecture

Our network is based on the version of 3D-Unet[3] described in [4]. However,
a major adaption was applied. The Unet is followed by a DSNT[8] that has
been adapted to work with 3D data. It applies a softmax function, such that
the sum over the Unet’s output’s spatial dimensions (a heatmap) equals 1 and,
afterwards, calculates the scalar product between the result and a mesh grid of
equal size, which encodes the coordinates of each of the volumes voxels. This
adaption enables the model to directly predict coordinates and has three prime
advantages. It’s prediction is independent of the size and shape of the input
volume, which is especially useful if both whole-brain as well as slab acquisitions
shall be processed without any further adaptation. Furthermore, this model
can be trained directly via a regression loss of the coordinates. And finally, the
heatmap that can be obtained allows insight into the network’s behaviour. In
contrast to [8], no further regularization steps were performed on the heatmap.
To take account of GPU memory limitations, the number of features of the Unet
was reduced. We will refer to the network as coordinate regression Unet or
CoRe-Unet for short. The CoRe-Unet is illustrated in Figure 1.

2.3 Evaluation scheme

The following scheme was used for the evaluation of the networks performance.
First, a test set of 23 randomly selected subjects was held out. On the remaining
59 subjects, a 5-fold crossvalidation was performed. Hence, they were subdivided
into 5 sets and during 5 trainings each subset was used as the validation set
once, while the rest formed the training set for the respective training iteration.
Every training lasted 500 epochs and converged without exception, while the
final weights were chosen based on the validation set loss performance.

The network was trained with the data of the original isotropic resolution
of 0.375mm3. As the ground truth, we determined the COMs of the LCs based
on the manual segmentations and propagated their coordinates into the lower,
original resolution. Adam[10] (learning rate 0.001, β1 = 0.9, β2 = 0.999) was
used as the optimization scheme and the euclidean distance was chosen as a loss
function. Two different versions of the network were trained. One with and
one without randomly applied data augmentation. When applied, the augmen-
tation comprised random combinations of the following transformations within
the specified ranges: rotation around every axis (-15◦, 15◦), translation in every
direction (-image size/2, image size/2) and scaling (-20%, 20%).

For determining the networks performance, we applied the resulting nets of
each fold to the held-out test set. Afterwards, the euclidean distance and a
dimension-wise mean squared error of all the predictions to the COMs (based
on the manual raters mask) were calculated. Furthermore, the impact of com-
bining the CoRe localization with the existing segmentation network of [4] was
assed by computing and comparing the resulting DSC (DSC = 2TP

2TP+FP+FN )

and False Discovery Rates (FDR = FP
FP+TP ) for three cases: First, applying

the 3D-Unet[4] in a sliding window fashion without any post-processing, apart
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Table 1. Errors measured in euclidean distance of the respective networks predicted
coordinates and the COM of the manually created LC masks. Every cell contains the
values for left and right LC in Millimeters (mm) and voxels (vx).

no augmentation with augmentation

mean 2.97mm (3.96vx), 3.13mm (4.18vx) 1.34mm (1.79vx), 1.23mm (1.64vx)

std 1.56mm (2.08vx), 1.52 (2.02vx) 0.86mm (1.15vx), 0.67mm (0.89vx)

from a tresholding with a value of 0.5 (labeled ”no post-processing” - NPP).
Second, the same with the post-processing steps suggested by [4] (labeled ”post-
processing” - PP), which requires setting several parameters that had been de-
termined empirically. Third, using the CoRe localizer for pre-processing, i.e.
passing only one patch, generated with the localizers predicted coordinates as
the center (labeled ”localizer pre-processing” - LPP), to the 3D-Unet without any
further post-processing. The median and maximum contrast ratios (CRs) be-
tween LC and a reference region in the pons represent popular LC biomarkers[2].
To gain insights into how the addition of the localizer affects them, they were
determined for the aforementioned three variants as well and the intra-class co-
efficients (ICCs) (confidence 0.95) were calculated for each fold to compare them
to the CRs determined using the manual masks.

3 Results

The errors measured as euclidean distances, which are reported in Table 1, in-
dicate better performance for the network that was trained with augmenta-
tion (AUG), as its errors are often less than half than those of the version,
that was trained without augmentation (NoAUG). For AUG, we determined
the mean squared errors of each dimension and found that in axial direction

(a) DSC (b) FDR

Fig. 2. Boxplots of DSCs and FDRs calculated for different scenarios: NPP: applied
the segmentation net from [4] without its post-processing step; PP: same as NPP, but
with the post-processing; LPP: using the proposed localizer (CoRe-Unet + AUG) to
extract a patch that is passed to the net of [4]. ” left”and ” right” encode the respective
LC.
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(left LC: 2.27mm ±2.99mm, right LC: 1.68mm ±1.85mm), the errors are sub-
stantially larger than in both sagittal (left LC: 0.13mm ±0.16mm, right LC:
0.12mm ±0.17mm) and coronal (left LC: 0.14mm ±0.18mm, right LC: 0.15mm
±0.18mm) direction. This trend was not observed in NoAUG.

Furthermore, the boxplots in Figure 2 show, that the scenario including the
CoRe-Unet as a pre-processing step to determine the relevant patch first (LPP),
yielded preferable segmentation performance of the subsequent 3D-Unet in terms
of both reported metrics as compared to the other tested options (NPP, PP[4]).
This trend continues when assessing the ICCs of the CRs. The average ICC
of NPP was close to zero (for median CRs: 0.06, for maximum CRs: 0.01).
PP slightly improved to averages of 0.37 and 0.16 for median and maximum
CRs respectively. LPP obtained average ICCs of 0.89 (median CRs) and 0.66
(maximum CRs).

4 Discussion

The calculation of the errors and their standard deviations reported in Table 1
indicated, that using augmentation during the training increases the performance
of the network. Although the statistical significance of the performance difference
remains to be determined, further investigation of possible reasons for this was
carried out. We examined the heatmaps that are produced as a byproduct and
that allow insight into the attention of the network. A clear trend, which is
illustrated in Figure 3 by an example could be found. While the heatmaps of
AUG have focussed on the actual position of LC, the NoAUG version merely
highlighted structures that, when the scalar product is calculated, result in a
coordinate roughly in the center of the pons. The latter is undesirable behaviour
that indicates that the network did not learn to localize the LC itself, but relied
on correlating, more prominent structures. Similar to the additional weighted
term in the loss function proposed by [8] that forces similarity of the heatmap
to a certain distribution, we presume that the augmentation had a regularizing
effect. We conclude from the measured dimension-wise errors, that it is most

(a) without augmentation (b) input (c) with augmentation

Fig. 3. An exemplary slice of a testset sample (b) and the corresponding heatmaps of
the network once trained without augmentation (a) and once with augmentation (c).
The heatmaps for left and right LC have been added for better visualization.
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challenging for the network to determine the rostrocaudal extent of the LC. The
experiments wrt. the different LC segmentation pipeline versions (NPP, PP,
LPP) suggest that the option utilizing the CoRe localizer performs preferable to
the others. We found quite substantial differences between the results of our PP
option and the values reported in [4], which we assume have their origin in the
different evaluation scheme applied in this study.

The results of this work suggest that including a CoRe-Unet localizer as
a pre-processing step in the established LC segmentation pipeline can improve
the performance. This improvement is mostly achieved by reducing false positive
regions outside the relevant vicinity of the LC. Visual inspection of the heatmaps
found that the method shows potential for generating segmentation masks. In
this case, instead of laborously delineating a complete mask, it would be sufficient
to merely select single points per LC as the ground truth for training. Therefore,
we will investigate this approach as a weakly supervised segmentation method
in future work.
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