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Abstract. X-ray phase-contrast imaging enhances soft-tissue contrast.
The measured differential phase signal strength in a Talbot-Lau interfer-
ometer is dependent on the object’s position within the setup. For large
objects, this affects the tomographic reconstruction and leads to artifacts
and perturbed phase values. In this paper, we propose a pipeline to learn
a filter and additional weights to invert the weighted forward projection.
We train and validate the method with a synthetic dataset. We tested
our pipeline on the Shepp-Logan phantom, and found that our method
suppresses the artifacts and the reconstructed image slices are close to
the actual phase values quantitatively and qualitatively. In an ablation
study we showed the superiority of our fully optimized pipeline.

1 Introduction

Medical applications could benefit from the high soft-tissue contrast of X-ray
phase contrast imaging techniques [2]. Especially, the Talbot-Lau interferometer
(TLI) is a promising setup to acquire phase contrast images in a medical context,
due to the comparably low overall system requirements and the high robustness
of the setup [1]. The TLI setup contains three gratings that are placed between
the source and detector (Fig. 1).

Engelhard et al. reported a correlation between the object magnification and
the measured signal strength of the differential phase image in the TLI [3].
Donath et al. confirmed these findings, and clarified that the measured phase
value depends on the position of the object relative to the phase grating G1 [4].
More concretely, the interferometer’s angular sensitivity is given as

S =
1

2π

∆ϕ

α
, (1)

where ∆ϕ is the measured intensity oscillation of the phase scan (normalized to
2π) and α is the refraction angle caused by the object.

The position-dependent sensitivity plays a critical role in the tomographic
reconstruction of large objects. The differential phase contrast at tomographic
angle θ and detector position t is [5]

ϕ(θ, t) =
∂

∂t

∫ ∞
−∞

S(r)δ(t, r)dr , (2)
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Fig. 1. Schematic setup of a Talbot-Lau interferometer. From [1].

where δ(t, r) encodes the objects phase values, and integration is along the ray
direction r, which depends on the tomographic angle θ. In general, the position-
dependent sensitivity changes the forward projection process, such that it is not
possible to use conventional filtered backprojection (FBP) algorithms. Chabior et
al. [5] first discussed the changing contrast formation in tomographic imaging.
One particular effect is that a parallel-beam geometry requires a circular tra-
jectory of 2π instead of π, and Chabior et al. show that a trajectory over π
leads to severe reconstruction artifacts. This shows that the reconstruction task
changes such that the standard analytic inversion is not possible. Furthermore,
Felsner et al. showed that the task can also not be exactly solved if it is split
into a standard general-purpose reconstruction and another part that is specific
to the differential phase [6]. In view of this challenge to find a direct solution,
we propose as an alternative a data-driven approach to differential phase re-
construction. One particularity of our approach is that we propose a specialized
neural network architecture that integrates domain knowledge to remain true
to the physical model [7]. For standard CT, this has been used to learn redun-
dancy weights [8] or dedicated reconstruction filters [9]. In this work, we learn a
tailored reconstruction filter, normalization weights, and voxel weights for differ-
ential phase-contrast, and experimentally show that it provides highly accurate
reconstructions.

2 Methods

This work investigates the inverse weighted radon transform, more specifically
its reconstruction filter and additional pixel and voxel weights. Although the
TLI measures the differential phase signal, for simplicity we consider in this
work direct refraction angles. We describe the network architecture in Sec. 2.1,
introduce our training and test data in Sec. 2.2, and describe the experimental
setup in Sec. 2.3.
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Fig. 2. Proposed Pipeline. The highlighted blocks contain parameters that can be
trained in data-driven fashion.

Fig. 3. Exemplary synthetic blobs phantoms used for training our model.

2.1 Inverse Weighted Radon Transform

Our approach is similar to previous works, where either redundancy weights
[8] or filter kernels [9] are estimated in a data-driven fashion. To this end, we
model the reconstruction task with a neural network (NN), where each step in
the pipeline is interpreted as a layer. A schematic sketch of the pipeline can be
found in Fig. 2.

The input of the NN is a sinogram that contains line integrals of weighted
phase values. The first layer corresponds to the reconstruction filter H, which
is carried out in the Fourier domain. Then, a layer of pixel-wise multiplicative
normalization weighting WN is added. The next layer represents the (analytical)
row-wise parallel backprojection. Afterwards, a voxel-wise multiplicative weight-
ing layer WV accounts for the position of the phase values in the volume. The
final step comprises averaging of the row-wise backprojections and masking of
the reconstructed volume. The filter and the weighting layers (as highlighted in
Fig. 2) can be optimized.

2.2 Data

For training, we used 1000 synthesized two-dimensional phantoms of 400× 400
voxels. Each phantom is a superposition of up to six randomly scaled and sized
distributions of binary blobs [10]. Figure 3 shows several examples. Based on the
phantoms, we computed an ideal sinogram P ∈ Rm×n without voxel weights,
and a sinogram P̃ ∈ Rm×n with voxel weights wi,j ∈ [0.1, 0.9], with m = 400
projections comprising n = 400 pixels acquired over π. We use the weighted
sinogram P̃ as input to our method and the FBP of the ideal sinogram P as
target for optimizing the model parameters. For validation, we used 20 % of the
training data. To evaluate our method’s performance on unseen data, we selected
the Shepp-Logan phantom [11].
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(a) Reconstruction results
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(b) Filter and weights

Fig. 4. Results of the baseline method (Avg. corr.) and our trained model (Ours):
(a) Reconstructions, differences to the ground truth, and corresponding diagonal line
profiles. MAE and SSIM (<MAE> \<SSIM>) refer to the circular ROI. (b) Averaged
reconstruction filter (top), the learned normalization weights (mid), and voxel weights
(bottom) of our trained model (blue) and the baseline/initialization (orange).

2.3 Experiments

We initialized the reconstruction filter with the Ram-Lak filter [12], which is
the optimal filter for the conventional reconstruction problem. The normalizing
weights were initialized with ones and the voxel weights were initialized ho-
mogeneously to the average of the weight interval, i.e., w̄ = 0.5 on our data.
Overall, we performed three experiments. First, as a baseline, we used the the
pipeline with the initialized weights for reconstruction. This correspond to an
offset corrected FBP reconstruction (conf. [5]). Second, in our method, the filter
and weights of the baseline were optimized on the training data (Sec. 2.2). Third,
to provide an ablation, we also separately trained for (i) a projection-wise recon-
struction filter, (ii) a global reconstruction filter, (iii) the normalizing weights,
and (iv) the voxel weights. Where applicable, we optimized the free parameters
with respect to the mean absolute error (MAE) using stochastic gradient descent
with adaptive moments [13] with 10−4 learning rate. In addition to the MAE,
we investigate the structural similarity index (SSIM) concerning our test dataset
within a centered ciruclar region of interest (ROI).

3 Results

The reconstruction of the Shepp-Logan phantom is shown for the average-corrected
baseline and our proposed method in top row of Fig. 4(a). The difference images
to the ideal reconstruction are shown below. We found that our proposed method
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Fig. 5. Ablation study for the proposed pipeline. Reconstructions, differences to
the ground truth, and corresponding diagonal line profiles. The MAE and SSIM
(<MAE> \<SSIM>) are given for the circular ROI.

remarkably reduces the error in the ROI compared to the average-corrected re-
construction. This can be seen from the line plots in Fig. 4(a), as well as from
the quantitative values. The MAE is almost reduced by half, and the SSIM is
increased by over 20 %. Figure 4(b) (top) shows the learned reconstruction filter
averaged over all projection angles in blue. The comparison to the Ram-Lak
(orange) shows that especially the high-frequency components get reduced in
favor of low to medium frequencies. Figure 4(b) (mid) shows the normalization
weights that were applied in the projection domain. Although we found that the
sinogram is nearly point-symmetric, it is interesting to note that the weights
along one projection are not symmetric. Figure 4(b) (bottom) shows the voxel
weights along (each) ray, plotted from the source to the detector. As expected,
we observed a strong dependence of voxel weights on the position along the ray.

The results of the ablation study are shown in Fig. 5. For all the configu-
rations, we show from top to bottom reconstruction, difference image, and line
plot. Overall, we found that the pipeline with different single layers does not
improve the reconstruction. The MAE and SSIM are close to MAE and SSIM
for the average-corrected reconstruction (Fig. 4(a)). Especially the offset of the
left air cavity is prominent in the line plots, and only reduced with our proposed
pipeline.

4 Discussion and Outlook

In a proof-of-concept study, we showed that optimizing reconstruction param-
eters in a data-driven manner has the potential to improve generally ill-posed
reconstruction problems. We improved average error rates and SSIM values by
large margins without utilizing costly iterative approaches. Still, our approach
preserves the interpretability of the conventional reconstruction pipeline and
somewhat ensuring data integrity. However, there are certain limitations that
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need to be addressed. First, this study is performed on simulated data. Second,
especially close to the border of the reconstructed volume, our method introduced
considerable artifacts, whose origin and severity need to be further investigated.
Furthermore, we investigated direct phase measurements instead of differential
phase, which shall be investigated in the future. In addition, we want to point
out promising directions for future studies. We believe the combination of a bi-
lateral or guided filter, or additional regularization with our method is desirable.
Using a backprojection filtering approach instead of the FBP-like pipeline aims
in the same direction. Also, the learned filter and weights can give insight of a
theoretically/physically sound analytical solution.
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