Poster / Softwaredemonstrationen – Überblick

Rückblick auf die BVM 2021 an der OTH Regensburg

P = Poster, S = Softwaredemonstration

 

Die Nummerierung der Poster ist systematisch innerhalb der Postersessions. Um unterschiedlichen Interessen gerecht zu werden, sind innerhalb jeder Postersession mehrere inhaltliche Kategorien vertreten.

 

Visible Light

» P01: Rotation Invariance for Unsupervised Cell Representation Learning: Analysis of The Impact of Enforcing Rotation Invariance or Equivariance on Representation for Cell Classification
Philipp Gräbel et al.
Rheinisch-Westfälische Technische Hochschule Aachen, Institute of Imaging & Computer Vision
» P02: Abstract: Deep Learning-based Quantification of Pulmonary Hemosiderophages in Cytology Slides
Christian Marzahl et al.
Friedrich-Alexander Universität Erlangen-Nürnberg, Lehrstuhl für Mustererkennung
» P18: Reduction of stain variability in bone marrow microscopy imagesReduction of Stain Variability in Bone Marrow Microscopy Images: Influence of Augmentation and Normalization Methods on Detection and Classification of Hematopoietic Cells
Philipp Gräbel et al.
Rheinisch-Westfälische Technische Hochschule Aachen, Institute of Imaging & Computer Vision
» P19: Cell Detection for Asthma on Partially Annotated Whole Slide Images: Learning to be EXACT
Christian Marzahl et al.
Friedrich-Alexander Universität Erlangen-Nürnberg, Lehrstuhl für Mustererkennung
» P35: Abstract: Deep Learning Algorithms Out-perform Veterinary Pathologists in Detecting the Mitotically Most Active Tumor Region
Marc Aubreville et al.
Technische Hochschule Ingolstadt, Computer Science

Imaging and Image Reconstruction

» P03: Learning the Inverse Weighted Radon Transform
Philipp Roser et al.
Friedrich-Alexander Universität Erlangen-Nürnberg, Lehrstuhl für Mustererkennung
» P04: Table Motion Detection in Interventional Coronary Angiography
Junaid R. Rajput et al.
Siemens Healthcare GmbH, Advanced Therapies - Innovation
» P05: Semi-permeable Filters for Interior Region of Interest Dose Reduction in X-ray Microscopy
Yixing Huang et al.
Friedrich-Alexander Universität Erlangen-Nürnberg, Lehrstuhl für Mustererkennung
» P20: Combining Reconstruction and Edge Detection in Computed Tomography
Jürgen Frikel et al.
Ostbayerische Technische Hochschule Regensburg
» P21: 2D Respiration Navigation Framework for 3D Continuous Cardiac Magnetic Resonance Imaging
Elisabeth Hoppe et al.
Friedrich-Alexander Universität Erlangen-Nürnberg, Lehrstuhl für Mustererkennung
» P22: Residual Neural Network for Filter Kernel Design in Filtered Back-projection for CT Image Reconstruction
Jintian Xu et al.
Shanghai Jiao Tong University
» P36: Abstract: Maximum A-posteriori Signal Recovery for OCT Angiography Image Generation
Lennart Husvogt et al.
Friedrich-Alexander Universität Erlangen-Nürnberg, Lehrstuhl für Mustererkennung
» P37: Abstract: Simultaneous Estimation of X-ray Back-scatter and Forward-scatter using Multi-task Learning
Philipp Roser et al.
Friedrich-Alexander Universität Erlangen-Nürnberg, Lehrstuhl für Mustererkennung

Computer-assisted Intervention

» P06: An Optical Colon Contour Tracking System for Robotaided Colonoscopy: Localization of a Balloon in an Image using the Hough-transform
Giuliano Giacoppo et al.
Universität Stuttgart, Institut für Medizingerätetechnik
» P07: Externe Ventrikeldrainage mittels Augmented Reality und Peer-to-Peer-Navigation
Simon Strzeletz et al.
Hochschule Offenburg, Labor für Computerassistierte Medizin
» P23: Abstract: Automatic Plane Adjustment in Surgical Cone Beam CT-volumes
Celia Martin Vicario et al.
Friedrich-Alexander Universität Erlangen-Nürnberg, Lehrstuhl für Mustererkennung
» P24: Abstract: Towards Automatic C-arm Positioning for Standard Projections in Orthopedic Surgery
Lisa Kausch et al. 
Deutsches Krebsforschungszentrum, Medical Image Computing

Computer-aided operation planning

» P08: Abstract: Contour-based Bone Axis Detection for X-ray-guided Surgery on the Knee
Florian Kordon et al.
Friedrich-Alexander Universität Erlangen-Nürnberg, Lehrstuhl für Mustererkennung
» P25: Open-Science Gefäßphantom für neurovaskuläre Interventionen
Lena Stevanovic et al.
Technische Hochschule Ulm, Institut für Medizintechnik und Mechatronik

Segmentation

» P09: Novel Evaluation Metrics for Vascular Structure Segmentation
Marcel Reimann et al.
Friedrich-Alexander Universität Erlangen-Nürnberg, Lehrstuhl für Mustererkennung
» P10: A Machine Learning Approach Towards Fatty Liver Disease Detection In Liver Ultrasound Images
Adarsh Kuzhipathalil et al.
Otto von Guericke Universität Magdeburg, Faculty of Computer Science
» P11: Deep Learning-based Segmentation of Brain, SEEG and DBS Electrodes on CT Images
Vanja Vlasov et al.
Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Belvaux, Luxembourg
» P26: Abstract: Semi-supervised Segmentation Based on Errorcorrecting Supervision
Robert Mendel et al.
Ostbayerische Technische Hochschule Regensburg, Regensburg Medical Image Computing
» P27: Abstract: Efficient Biomedical Image Segmentation on EdgeTPUs
Andreas M. Kist et al.
University Hospital Erlangen, Phoniatrics and Pediatric Audiology

» P38: Deep Learning-based Spine Centerline Extraction in Fetal Ultrasound
Astrid Franz et al.
Philips GmbH, Innovative Technologies
» P39: Abstract: Studying Robustness of Semantic Segmentation under Domain Shift in Cardiac MRI
Peter M. Full et al.
Deutsches Krebsforschungszentrum, Medical Image Computing
» P40: On Efficient Extraction of Pelvis Region from CT Data
Tatyana Ivanovska et al.
Georg-August University Göttingen, Department for Computational Neuroscience 

U-Net Applications

» P12: Segmentation of the Fascia Lata in Magnetic Resonance Images of the Thigh: Comparison of an Unsupervised Technique with a U-Net in 2D and Patch-wise 3D
Lis J. Louise et al.
Friedrich-Alexander Universität Erlangen-Nürnberg, Institute of Medical Physics
» P28: Human Axon Radii Estimation at MRI Scale: Deep Learning Combined with Large-scale Light Microscopy
Laurin Mordhorst et al.
Universitätsklinikum Hamburg-Eppendorf, Institute of Systems Neuroscience
» P41: CT Normalization by Paired Image-to-image Translation for Lung Emphysema Quantification
Insa Lange et al.
Universität zu Lübeck, Institut für Medizinische Informatik

Attention Maps

» P42: Ultrasound Breast Lesion Detection using Extracted Attention Maps from a Weakly Supervised Convolutional Neural Network
Dalia Rodríguez-Salas et al.
Friedrich-Alexander Universität Erlangen-Nürnberg, Lehrstuhl für Mustererkennung
» S02: M3d-CAM: A PyTorch Library to Generate 3D Attention Maps for Medical Deep Learning
Karol Gotkowski et al.
Technische Universität Darmstadt und Fraunhofer IGD

Computer-Aided Diagnosis

» P13: Abstract: Automatic CAD-RADS Scoring using Deep Learning
Felix Denzinger et al.
Friedrich-Alexander Universität Erlangen-Nürnberg, Lehrstuhl für Mustererkennung
» P14: Towards Deep Learning-based Wall Shear Stress Prediction for Intracranial Aneurysms
Annika Niemann et al.
Otto von Guericke Universität Magdeburg
» P29: Age Estimation on Panoramic Dental X-ray Images using Deep Learning
Sarah Wallraff et al.
Friedrich-Alexander Universität Erlangen-Nürnberg, Lehrstuhl für Mustererkennung
» P43: Abstract: Extracting and Leveraging Nodule Features with Lung Inpainting for Local Feature Augmentation
Sebastian Gündel et al.
Friedrich-Alexander Universität Erlangen-Nürnberg, Lehrstuhl für Mustererkennung
» P44: Abstract: Automatic Dementia Screening and Scoring by Applying Deep Learning on Clock-drawing Tests
Shuqing Chen et al.
Friedrich-Alexander Universität Erlangen-Nürnberg, Lehrstuhl für Mustererkennung
» S03: Coronary Plaque Analysis for CT Angiography Clinical Research
Felix Denzinger et al.
Friedrich-Alexander Universität Erlangen-Nürnberg, Lehrstuhl für Mustererkennung

Registration

» P15: Evaluating Design Choices for Deep Learning Registration Networks: Architecture Matters
Hanna Siebert et al.
Universität zu Lübeck, Institut für Medizinische Informatik
» P16: Learning the Update Operator for 2D/3D Image Registration
Srikrishna Jaganathan et al.
Friedrich-Alexander Universität Erlangen-Nürnberg, Lehrstuhl für Mustererkennung
» P30: Multi-modal Unsupervised Domain Adaptation for Deformable Registration Based on Maximum Classifier Discrepancy
Christian N. Kruse et al.
Universität zu Lübeck, Institut für Medizinische Informatik
» P45: Deep Learning Compatible Differentiable X-ray Projections for Inverse Rendering
Karthik Shetty et al.
Friedrich-Alexander Universität Erlangen-Nürnberg, Lehrstuhl für Mustererkennung

Datasets

» P17: Abstract: Generation of Annotated Brain Tumor MRIs with Tumor-induced Tissue Deformations for Training and Assessment of Neural Networks
Hristina Uzunova et al.
Universität zu Lübeck, Institut für Medizinische Informatik
» P31: Abstract: A Completely Annotated Whole Slide Image Dataset of Canine Breast Cancer to Aid Human Breast Cancer Research
Marc Aubreville et al.
Technische Hochschule Ingolstadt, Computer Science
» P46: Abstract: Are Fast Labeling Methods Reliable?: A Case Study of Computer-aided Expert Annotations on Microscopy Slides
Christian Marzahl et al.
Friedrich-Alexander Universität Erlangen-Nürnberg, Lehrstuhl für Mustererkennung

Generative Adversarial Networks

» P32: Acquisition Parameter-conditioned Magnetic Resonance Image-to-image Translation
Jonas Denck et al.
Friedrich-Alexander Universität Erlangen-Nürnberg, Lehrstuhl für Mustererkennung
» P33: Fine-tuning Generative Adversarial Networks Using Metaheuristics: A Case Study on Barrett's Esophagus Identification
Luis A. Souza et al.
Federal University of São Carlos - UFScar, Department of Computing

Time Series and Video Analysis

» P47: Abstract: Time Matters: Handling Spatio-temporal Perfusion Information for Automated Treatment in Cerebral Ischemia Scoring
Maximilian Nielsen et al.
Universität Hamburg, Institut für Computational Neuroscience
» S01: Abstract: Multi-camera, Multi-person, and Real-time Fall Detection using Long Short Term Memory
Christian Heinrich et al. 
Technische Universität Braunschweig, Peter L. Reichertz Institute for Medical Informatics

Visualization

» P48: A Geometric and Textural Model of the Colon as Ground Truth for Deep Learning-based 3D-reconstruction
Ralf Hackner et al.
Fraunhofer IIS, Erlangen
» P49: Deep Learning-basierte Oberflächenrekonstruktion aus Binärmasken
Carina Tschigor et al.
Fraunhofer MEVIS, Bremen
» S04: Interactive Visualization of 3D CNN Relevance Maps to Aid Model Comprehensibility: Application to the Detection of Alzheimer’s Disease in MRI Images
Martin Dyrba et al.
Deutsches Zentrum für Neurodegenerative Erkrankungen, Rostock
» S05: Abstract: VirtualDSA++: Automated Segmentation, Vessel Labeling, Occlusion Detection, and Graph Search on CT Angiography Data
Florian Thamm et al.
Friedrich-Alexander Universität Erlangen-Nürnberg, Lehrstuhl für Mustererkennung

Denoising

» P50: A Novel Trilateral Filter for Digital Subtraction Angiography
Purvi Tripathi et al.
Friedrich-Alexander Universität Erlangen-Nürnberg, Lehrstuhl für Mustererkennung
» P51: Abstract: JBFnet: Low Dose CT-denoising by Trainable Joint Bilateral Filtering
Patwari, Mayank et al.
Friedrich-Alexander Universität Erlangen-Nürnberg, Lehrstuhl für Mustererkennung

Neural Networks in General

» P34: Neural Networks with Fixed Binary Random Projections Improve Accuracy in Classifying Noisy Data
Zijin Yang et al.
Friedrich-Alexander Universität Erlangen-Nürnberg, Lehrstuhl für Machine Intelligence
We use cookies to improve the usability of the website. By visiting you agree to this.